Skip to main content

Advertisement

Log in

Curcumin@metal organic frameworks nano-composite for treatment of chronic toxoplasmosis

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Toxoplasmosis is a zoonotic protozoal disease caused by Toxoplasma gondii, an intracellular opportunistic protozoan parasite that can infect any warm-blooded vertebrate cell. In this study, zirconium, and iron-based metal-organic framework was prepared according to the solvothermal method. New nanocomposite (Curcumin@MOFs) was prepared by reacting curcumin with amino-functionalized metal-organic frameworks (Fe-MOF and UiO-66-NH2). Besides characterizations of the composite by powder X-ray diffraction and scanning electron microscope, nano-Curcumin@MOFs was used as a new novel structure as atrial for treatment of chronic toxoplasmosis. Results showed a reduced number of brain cysts, high levels of serum Toxo IgG, and normal histo-morphology with preserved parenchymal, and stromal tissues in rats groups treated with curcumin and Curcumin@MOFs nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. James SL. Metal-organic frameworks. Chem Soc Rev. 2003;32:276–88.

    CAS  Google Scholar 

  2. Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, et al. Ultrahigh porosity in metal-organic frameworks. Science. 2010;329:424–8.

    CAS  Google Scholar 

  3. Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT. Metal–organic framework materials as catalysts. Chem Soc Rev. 2009;38:1450–9.

    CAS  Google Scholar 

  4. Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, et al. Hydrogen storage in microporous metal-organic frameworks. Science. 2003;300:1127–9.

    CAS  Google Scholar 

  5. Abdelhameed RM, Abdel-Gawad H, Taha M, Hegazi B. Separation of bioactive chamazulene from chamomile extract using metal-organic framework. J Pharm Biomed Anal. 2017;146:126–34.

    CAS  Google Scholar 

  6. Abdelhameed R, Abdel-Gawad H, Silva C, Rocha J, Hegazi B, Silva A. Kinetic and equilibrium studies on the removal of 14 C-ethion residues from wastewater by copper-based metal–organic framework. Int J Environm Sci Technol. 2018;15:2283–94.

    CAS  Google Scholar 

  7. Abdelhameed RM, Emam HE, Rocha J, Silva AM. Cu-BTC metal-organic framework natural fabric composites for fuel purification. Fuel Process Technol. 2017;159:306–12.

    CAS  Google Scholar 

  8. Abdelhameed RM, Ananias D, Silva AM, Rocha J. Building light‐emitting metal‐organic frameworks by post‐synthetic modification. ChemSelect. 2017;2:136–9.

    CAS  Google Scholar 

  9. Abdelhameed RM, Carlos LD, Silva AM, Rocha J. Engineering lanthanide-optical centres in IRMOF-3 by post-synthetic modification. New J Chem. 2015;39:4249–58.

    CAS  Google Scholar 

  10. Abdelhameed RM, Carlos LD, Rabu P, Santos SM, Silva AM, Rocha J. Designing near‐infrared and visible light emitters by postsynthetic modification of Ln+ 3–IRMOF‐3. Eur J Inorganic Chem. 2014;2014:5285–95.

    CAS  Google Scholar 

  11. Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, et al. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater. 2010;9:172.

    CAS  Google Scholar 

  12. Abazari R, Mahjoub AR, Ataei F, Morsali A, Carpenter-Warren CL, Mehdizadeh K, et al. Chitosan immobilization on bio-MOF nanostructures: a biocompatible pH-responsive nanocarrier for doxorubicin release on MCF-7 cell lines of human breast cancer. Inorganic Chem. 2018;57:13364–79.

    CAS  Google Scholar 

  13. Chowdhuri AR, Singh T, Ghosh SK, Sahu SK. Carbon dots embedded magnetic nanoparticles@ chitosan@ metal organic framework as a nanoprobe for pH sensitive targeted anticancer drug delivery. ACS Appl Mater Interfaces. 2016;8:16573–83.

    CAS  Google Scholar 

  14. Neufeld MJ, Lutzke A, Tapia JB, Reynolds MM. Metal–organic framework/chitosan hybrid materials promote nitric oxide release from S-nitrosoglutathione in aqueous solution. ACS Appl Mater Interfaces. 2017;9:5139–48.

    CAS  Google Scholar 

  15. Eissa MM, Barakat AM, Amer EI, Younis LK. Could miltefosine be used as a therapy for toxoplasmosis? Exp Parasitology. 2015;157:12–22.

    CAS  Google Scholar 

  16. Lang C, Groß U, Lüder CG. Subversion of innate and adaptive immune responses by Toxoplasma gondii. Parasitology Res. 2007;100:191–203.

    Google Scholar 

  17. Remington JS, Thulliez P, Montoya JG. Recent developments for diagnosis of toxoplasmosis. J Clinical Microbiology. 2004;42:941–5.

    Google Scholar 

  18. Kim K, Weiss LM. Toxoplasma gondii: the model apicomplexan. Int J Parasitol. 2004;34:423–32.

    CAS  Google Scholar 

  19. Goldstein EJ, Montoya JG, Remington JS. Management of toxoplasma gondii infection during pregnancy. Clin Infect Dis. 2008;47:554–66.

    Google Scholar 

  20. Kur J, Holec-Gąsior L, Hiszczyńska-Sawicka E. Current status of toxoplasmosis vaccine development. Expert Rev Vaccines. 2009;8:791–808.

    CAS  Google Scholar 

  21. McLeod R, Khan AR, Noble GA, Latkany P, Jalbrzikowski J, Boyer K, et al. Severe sulfadiazine hypersensitivity in a child with reactivated congenital toxoplasmic chorioretinitis. Pediatric Infect Dis J. 2006;25:270–2.

    Google Scholar 

  22. Değerli K, Kilimcioğlu AA, Kurt Ö, Tamay AT, Özbilgin A. Efficacy of azithromycin in a murine toxoplasmosis model, employing a Toxoplasma gondii strain from Turkey. Acta Tropica. 2003;88:45–50.

    Google Scholar 

  23. Schmidt DR, Hogh B, Andersen O, Hansen SH, Dalhoff K, Petersen E. Treatment of infants with congenital toxoplasmosis: tolerability and plasma concentrations of sulfadiazine and pyrimethamine. Eur J Pediatrics. 2006;165:19–25.

    CAS  Google Scholar 

  24. McFadden D, Boothroyd J. Cytochrome b mutation identified in a decoquinate-resistant mutant of toxoplasma gondii. J Eukaryotic Microbiol. 1999;46:81S.

    CAS  Google Scholar 

  25. McFadden DC, Tomavo S, Berry EA, Boothroyd JC. Characterization of cytochrome b from Toxoplasma gondii and Qo domain mutations as a mechanism of atovaquone-resistance. Mol Biochem Parasitol. 2000;108:1–12.

    CAS  Google Scholar 

  26. Aspinall TV, Joynson DH, Guy E, Hyde JE, Sims PF. The molecular basis of sulfonamide resistance in Toxoplasma gondii and implications for the clinical management of toxoplasmosis. J Infect Dis. 2002;185:1637–43.

    CAS  Google Scholar 

  27. Lai B-S, Witola WH, El Bissati K, Zhou Y, Mui E, Fomovska A. et al. Molecular target validation, antimicrobial delivery, and potential treatment of Toxoplasma gondii infections. Proc Natl Acad Sci. 2012;109:14182–7.

    CAS  Google Scholar 

  28. Mathew A, Fukuda T, Nagaoka Y, Hasumura T, Morimoto H, Yoshida Y, et al. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS ONE. 2012;7:e32616.

    CAS  Google Scholar 

  29. Gressler L, Oliveira C, Coradini K, Dalla Rosa L, Grando T, Baldissera M, et al. Trypanocidal activity of free and nanoencapsulated curcumin on Trypanosoma evansi. Parasitology. 2015;142:439–48.

    CAS  Google Scholar 

  30. Flora G, Gupta D, Tiwari A. Nanocurcumin: a promising therapeutic advancement over native curcumin. Crit Rev Ther Drug Carrier Syst. 2013;30:331–68.

    CAS  Google Scholar 

  31. Wang S, Su R, Nie S, Sun M, Zhang J, Wu D, et al. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J Nutr Biochem. 2014;25:363–76.

    CAS  Google Scholar 

  32. Ghosh A, Banerjee T, Bhandary S, Surolia A. Formulation of nanotized curcumin and demonstration of its antimalarial efficacy. Int J Nanomed. 2014;9:5373.

    Google Scholar 

  33. Djurkoviae-Djakoviae O, Milenkoviae V. Murine model of drug-induced reactivation of toxoplasma gondii. Acta Protozool. 2001;40:99–106.

    Google Scholar 

  34. Suvarna KS, Layton C, Bancroft JD. Bancroft’s Theory and Practice of Histological Techniques E-Book: Elsevier Health Sciences; 2018.

  35. Duncan DB. Multiple range tests for correlated and heteroscedastic means. Biometrics. 1957;13:164–76.

    Google Scholar 

  36. Shaikh J, Ankola D, Beniwal V, Singh D, Kumar MR. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci. 2009;37:223–30.

    CAS  Google Scholar 

  37. Abdelhameed RM, Rehan M, Emam HE. Figuration of Zr-based MOF@ cotton fabric composite for potential kidney application. Carbohydrate Polym. 2018;195:460–7.

    CAS  Google Scholar 

  38. Abdelhameed RM, Abdelhameed RE, Kamel HA. Iron-based metal-organic-frameworks as fertilizers for hydroponically grown Phaseolus vulgaris. Mater Lett. 2019;237:72–9.

    CAS  Google Scholar 

  39. Ward RJ, Crichton RR, Taylor DL, Della Corte L, Srai SK, Dexter DT. Iron and the immune system. J Neural Transmission. 2011;118:315–28.

    CAS  Google Scholar 

  40. Feng J, Ma W, Xu Z, Wang Y, Liu J. Effects of iron glycine chelate on growth, haematological and immunological characteristics in weanling pigs. Animal Feed Sci Technol. 2007;134:261–72.

    CAS  Google Scholar 

  41. Huo C, Xiao J, Xiao K, Zou S, Wang M, Qi P, et al. Pre-treatment with zirconia nanoparticles reduces inflammation induced by the pathogenic H5N1 influenza virus. Int J Nanomed. 2020;15:661.

    CAS  Google Scholar 

  42. Hassabo AA, Mousa AM, Abdel-Gawad H, Selim MH, Abdelhameed RM. Immobilization of l-methioninase on a zirconium-based metal–organic framework as an anticancer agent. J Mater Chem B. 2019;7:3268–78.

    CAS  Google Scholar 

  43. Emam HE, Darwesh OM, Abdelhameed RM. In-growth metal organic framework/synthetic hybrids as antimicrobial fabrics and its toxicity. Colloids Surf B Biointerfaces. 2018;165:219–28.

    CAS  Google Scholar 

  44. Simanjuntak TP, Hatta M, Tahir AM, Sirait RH, Karo MB, Tambaib T, et al. Analysis of anti-toxoplasma immunoglobulin G and immunoglobulin M antibody levels after intervention with Curcuma Longa extract on early pregnant mice with acute toxoplasmosis. J Global Infect Dis. 2019;11:25.

    Google Scholar 

  45. Hegazi AG, Al Guthami FM, Al Gethami AF, Barakat AM. Egyptian propolis 12: influence of Propolis on Cytokines of Toxoplasma gondii Infected Rats. Int J Curr Microbiol App Sci. 2017;6:202–11.

    CAS  Google Scholar 

  46. Basniwal RK, Buttar HS, Jain V, Jain N. Curcumin nanoparticles: preparation, characterization, and antimicrobial study. J Agric Food Chem. 2011;59:2056–61.

    Google Scholar 

  47. Dandekar PP, Jain R, Patil S, Dhumal R, Tiwari D, Sharma S, et al. Curcumin-loaded hydrogel nanoparticles: application in anti-malarial therapy and toxicological evaluation. J Pharm Sci. 2010;99:4992–5010.

    CAS  Google Scholar 

  48. Kelly MN, Kolls JK, Happel K, Schwartzman JD, Schwarzenberger P, Combe C, et al. Interleukin-17/interleukin-17 receptor-mediated signaling is important for generation of an optimal polymorphonuclear response against Toxoplasma gondii infection. Infection Immunity. 2005;73:617–21.

    CAS  Google Scholar 

  49. Rasmussen HB, Christensen SB, Kvist LP, Karazmi A. A simple and efficient separation of the curcumins, the antiprotozoal constituents of Curcuma longa. Planta Med. 2000;66:396–8.

    CAS  Google Scholar 

  50. Reddy RC, Vatsala PG, Keshamouni VG, Padmanaban G, Rangarajan PN. Curcumin for malaria therapy. Biochem Biophys Res Commun. 2005;326:472–4.

    CAS  Google Scholar 

  51. Cui L, Miao J, Cui L. Cytotoxic effect of curcumin on malaria parasite Plasmodium falciparum: inhibition of histone acetylation and generation of reactive oxygen species. Antimicrobial Agents Chemotherapy. 2007;51:488–94.

    CAS  Google Scholar 

  52. Akhtar F, Rizvi MMA, Kar SK. Oral delivery of curcumin bound to chitosan nanoparticles cured Plasmodium yoelii infected mice. Biotechnol Adv. 2012;30:310–20.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reda M. Abdelhameed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Shafey, A.A.M., Hegab, M.H.A., Seliem, M.M.E. et al. Curcumin@metal organic frameworks nano-composite for treatment of chronic toxoplasmosis. J Mater Sci: Mater Med 31, 90 (2020). https://doi.org/10.1007/s10856-020-06429-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-020-06429-y

Navigation