Skip to main content
Log in

Chaotic Walking of Cold Atoms in a 2D Optical Lattice

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Coherent dynamics of cold atoms in a 2D optical lattice with interfering laser beams is studied with account for internal and external degrees of freedom of an atom. A system of differential equations for coupled degrees of freedom obtained in the semiclassical approximation has regular and chaotic solutions depending on the atomic-field detuning from resonance. The Hamilton chaos is manifested in the form of chaotic Rabi oscillations and random walks of cold atoms in the lattice for relatively small resonance detunings. It is shown that the deterministic chaos appears as a result of jumps in the value of the electric dipole moment of an atom approaching the nodes of a 2D standing wave. This in turn causes a pseudorandom behavior of momenta of atoms and, as a consequence, their random walks in the absolutely rigid 2D optical lattice without any external modulation of its parameters. It is shown in numerical experiments with 106 atoms that their distributions over the lattice for different resonance detunings differ significantly. This fact can be used for detecting the effect of random walks of cold atoms in a real experiment by the absorption image method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. V. G. Minogin and V. S. Letokhov, Laser Light Pressure on Atoms (Gordon and Breach, New York, 1987).

    Google Scholar 

  2. V. Letokhov, Laser Control of Atoms and Molecules (Oxford Univ. Press, New York, 2007).

    Google Scholar 

  3. A. P. Kazantsev, G. I. Surdutovich, and V. P. Yakovlev, Mechanical Action of Light on Atoms (World Scientific, Singapore, 1990).

    Book  Google Scholar 

  4. G. A. Askaryan, Sov. Phys. JETP 15, 1088 (1962).

    Google Scholar 

  5. V. S. Letokhov, JETP Lett. 7, 272 (1968).

    ADS  Google Scholar 

  6. G. Grynberg and C. Robilliard, Phys. Rep. 355, 335 (2001).

    Article  ADS  Google Scholar 

  7. G. Raithel and N. Morrow, Adv. At. Mol. Opt. Phys. 53, 187 (2006).

    Article  ADS  Google Scholar 

  8. M. Greiner and S. Folling, Nature (London, U.K.) 435, 736 (2008).

    Article  ADS  Google Scholar 

  9. A. Hemmerich, D. Schropp, Jr., and T. W. Hansch, Phys. Rev. A 44, 1910 (1991).

    Article  ADS  Google Scholar 

  10. M. G. Raizen, Adv. At. Mol. Opt. Phys. 41, 43 (1999).

    Article  ADS  Google Scholar 

  11. W. K. Hensinger, N. R. Heckenberg, G. J. Milburn, and H. Rubinsztein-Dunlop, J. Opt. B 5, 83 (2003).

    Article  ADS  Google Scholar 

  12. M. Sadgrove, S. Wimberger, S. Parkins, and R. Leonhardt, Phys. Rev. Lett. 94, 174103 (2005).

    Article  ADS  Google Scholar 

  13. R. Graham, M. Schlautmann, and P. Zoller, Phys. Rev. A 45, R19 (1992).

    Article  ADS  Google Scholar 

  14. S. V. Prants, Phys. Scr. 92, 044002 (2017).

    Article  ADS  Google Scholar 

  15. L. E. Kon’kov and S. V. Prants, JETP Lett. 65, 833 (1997).

    Article  ADS  Google Scholar 

  16. S. V. Prants and L. E. Kon’kov, JETP Lett. 73, 180 (2001).

    Article  ADS  Google Scholar 

  17. V. Yu. Argonov and S. V. Prants, J. Exp. Theor. Phys. 96, 832 (2003).

    Article  ADS  Google Scholar 

  18. S. V. Prants, M. Yu. Uleysky, and V. Yu. Argonov, Phys. Rev. A 73, 023807 (2006).

    Article  ADS  Google Scholar 

  19. V. Yu. Argonov and S. V. Prants, Phys. Rev. A 75, 063428 (2007).

    Article  ADS  Google Scholar 

  20. V. Yu. Argonov and S. V. Prants, Phys. Rev. A 78, 043413 (2008).

    Article  ADS  Google Scholar 

  21. V. O. Vitkovskii and S. V. Prants, Opt. Spectrosc. 114, 52 (2013).

    Article  ADS  Google Scholar 

  22. S. V. Prants, JETP Lett. 104, 749 (2016).

    Article  ADS  Google Scholar 

  23. D. Hennequin and D. Verkerk, Eur. Phys. J. D 57, 95 (2010).

    Article  ADS  Google Scholar 

  24. E. Horsley, S. Koppell, and L. Reichl, Phys. Rev. E 89, 012917 (2014).

    Article  ADS  Google Scholar 

  25. Y. Boretz and L. E. Reichl, Phys. Rev. E 91, 042901 (2015).

    Article  ADS  Google Scholar 

  26. M. D. Porter and L. E. Reichl, Phys. Rev. E 93, 012204 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  27. L. E. Kon’kov and S. V. Prants, J. Math. Phys. 37, 1204 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  28. C. S. Adams, M. Siegel, and J. Mlynek, Phys. Rep. 240, 143 (1994).

    Article  ADS  Google Scholar 

  29. K. Baldwin, Contemp. Phys. 46, 105 (2005).

    Article  ADS  Google Scholar 

  30. C. J. Foot, Atomic Physics (Oxford Univ. Press, New York, 2005).

    MATH  Google Scholar 

  31. G. Reinaudi, T. Lahaye, Z. Wang, and D. Guery-Odelin, Opt. Lett. 32, 3143 (2007).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks L.E. Kon’kov and A.A. Didov for their help in preparing some figures.

Funding

This work was performed under the State assignment of the Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences (project no. 0271-2019-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Prants.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prants, S.V. Chaotic Walking of Cold Atoms in a 2D Optical Lattice. J. Exp. Theor. Phys. 131, 410–417 (2020). https://doi.org/10.1134/S106377612008004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377612008004X

Navigation