Skip to main content
Log in

Effect of Light Element Impurities on the Edge Dislocation Glide in Nickel and Silver: Molecular Dynamics Simulation

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The influence of light element (C, N, O) impurities on the edge dislocation glide in fcc metals (Ni, Ag) is studied by molecular dynamics simulation. The introduction of impurity atoms is found to increase the dislocation glide threshold stress significantly, from 10 MPa in the pure metals at a temperature of 300 K to 1000–2000 MPa after the introduction of 10 at % impurity atoms. The increase in the threshold stress with the concentration of impurity atoms is shown to be caused by the Suzuki mechanism, i.e., the pinning of impurity atoms by the stacking fault between partial dislocations. The energies of binding of impurity atoms to stacking faults were determined for the metals under study. When temperature increases, the dislocation glide velocity in the pure metals decreases. After the introduction of impurity atoms, this dependence is reversed: the dislocation velocity increases gradually with temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. L. Olmsted, L. G. Hector, Jr., W. A. Curtin, et al., Modell. Simul. Mater. Sci. Eng. 13, 371 (2005).

    Article  ADS  Google Scholar 

  2. Sh. Zhao, Yu. N. Osetsky, and Y. Zhang, J. Alloys Compd. 701, 1003 (2017).

    Article  Google Scholar 

  3. D. Rodney, L. Ventelon, E. Clouet, et al., Acta Mater. 124, 633 (2017).

    Article  Google Scholar 

  4. A. Hunter, I. J. Beyerlein, T. C. Germann, et al., Phys. Rev. B 84, 144108 (2011).

    Article  ADS  Google Scholar 

  5. C. Chen, F. Meng, P. Ou, et al., J. Phys.: Condens. Matter 31, 315701 (2019).

    Google Scholar 

  6. G. Po, Y. Cui, D. Rivera, et al., Acta Mater. 119, 123 (2016).

    Article  Google Scholar 

  7. J. Friedel, Dislocations (Elsevier, Amsterdam, 1964).

    MATH  Google Scholar 

  8. J. Hirth and J. Lotte, Theory of Dislocations (McGraw-Hill, New York, 1967).

    Google Scholar 

  9. H. J. Goldschmidt, Interstitial Alloys (Butterworths, London, 1967).

    Book  Google Scholar 

  10. I. I. Kornilov, N. M. Matveeva, L. I. Pryakhina, et al., Metallochemical Properties of Elements of the Periodic System (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  11. L. E. Toth, Transition Metal Carbides and Nitrides (Academic, New York, 1971).

    Google Scholar 

  12. E. Clouet, S. Garruchet, H. Nguyen, et al., Acta Mater. 56, 3450 (2008).

    Article  Google Scholar 

  13. R. G. A. Veiga, H. Goldenstein, M. Perez, et al., Scr. Mater. 108, 19 (2015).

    Article  Google Scholar 

  14. F. Granberg, D. Terentyev, and K. Nordlund, J. Nucl. Mater. 460, 23 (2015).

    Article  ADS  Google Scholar 

  15. K. D. Njoroge, G. O. Rading, J. M. Kihiu, et al., Int. J. Comp. Eng. Res. 4, 5 (2014).

    Google Scholar 

  16. L. Pauling, The Nature of the Chemical Bond (Cornell Univ. Press, Ithaca, 1960).

    MATH  Google Scholar 

  17. F. Cleri and V. Rosato, Phys. Rev. B 48, 22 (1993).

    Article  ADS  Google Scholar 

  18. G. M. Poletaev, I. V. Zorya, R. Y. Rakitin, et al., Mater. Phys. Mech. 42, 380 (2019).

    Google Scholar 

  19. G. M. Poletaev, I. V. Zorya, M. D. Starostenkov, R. Yu. Rakitin, and P. Ya. Tabakov, J. Exp. Theor. Phys. 128, 88 (2019).

    Article  ADS  Google Scholar 

  20. G. M. Poletaev, I. V. Zorya, D. V. Novoselova, et al., Int. J. Mater. Res. 108, 785 (2017).

    Article  Google Scholar 

  21. M. Ruda, D. Farkas, and G. Garcia, Comp. Mater. Sci. 45, 550 (2009).

    Article  Google Scholar 

  22. P. Vashishta, R. K. Kalia, A. Nakano, et al., J. Appl. Phys. 103, 083504 (2008).

    Article  ADS  Google Scholar 

  23. M. A. San Miguel and J. F. Sanz, Phys. Rev. B 58, 2369 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Poletaev.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poletaev, G.M., Zorya, I.V. Effect of Light Element Impurities on the Edge Dislocation Glide in Nickel and Silver: Molecular Dynamics Simulation. J. Exp. Theor. Phys. 131, 432–436 (2020). https://doi.org/10.1134/S1063776120080038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120080038

Navigation