Skip to main content
Log in

The Effect of the Interaction of Excitations with the Interface between Nonlinear Media with a Switching on the Formation of Localized States

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Models of contacting media with stepwise nonlinearity are considered in the presence of interaction of excitations with the interface as a planar defect. In such media, an instantaneous switching from one level to another occurs when the field amplitude reaches a certain threshold value. New types of localized states with specific structure and properties are found. The structure of such states is determined by the formation of domains in the near-boundary regions, in which the values of certain parameters of the media differ from those in other regions. It is shown that, in the presence of interaction of excitations with the interface, new phenomena may occur that are related to the structural features of the field of localized states. The conditions for the existence of localized states are changed. The field can be maximized not only in the near-boundary region but also at the interface between a medium with stepwise nonlinearity and a linear medium. In the medium with stepwise nonlinearity containing a planar defect, the interaction of excitations with this defect leads to a decrease in the amplitude in the plane of the defect. As the intensity of interaction with the defect increases at a fixed localization energy, the domain width increases. It is shown that the threshold value of the total energy flow starting from which localized states exist and a domain is formed can be controlled by the intensity of the interaction of excitations with the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.

Similar content being viewed by others

REFERENCES

  1. G. G. Gurzadyan, V. G. Dmitriev, D. N. Nikogosyan, Nonlinear Optical Crystals: Properties and Applications in Quantum Electronics (Radio Svyaz’, Moscow, 1991) [in Russian].

    Google Scholar 

  2. S. Leble, Waveguide Propagation of Nonlinear Waves (Springer, Switzerland, 2019).

    Book  Google Scholar 

  3. O. Takayama, A. A. Bogdanov, and A. V. Lavrinenko, J. Phys.: Condens. Matter 29, 463001 (2017).

    ADS  Google Scholar 

  4. Z. A. Munazza, Phys. Lett. A 381, 2643 (2017).

    Article  Google Scholar 

  5. D. Mikhalake, R. G. Nazmitdinov, and V. K. Fedyanin, Sov. J. Part. Nucl. 20, 86 (1989).

    Google Scholar 

  6. I. E. Dikshtein, S. A. Nikitov, and I. E. Nikitov, Phys. Solid State 40, 1710 (1998).

    Article  ADS  Google Scholar 

  7. I. V. Shadrivov, A. A. Sukhorukov, Yu. S. Kivshar, A. A. Zharov, A. D. Boardman, and P. Egan, Phys. Rev. E 69, 016617 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  8. M. S. Hamada, A. I. Assa’d, H. S. Ashour, and M. M. Shabat, J. Microwaves Optoelectron. 5, 45 (2006).

  9. O. V. Korovai and P. I. Khadzhi, Phys. Solid State 50, 1165 (2008).

    Article  ADS  Google Scholar 

  10. Y. V. Bludov, D. A. Smirnova, Y. S. Kivshar, N. M. R. Peres, and M. I. Vasilevsky, Phys. Rev. B 89, 035406 (2014).

    Article  ADS  Google Scholar 

  11. D. Valovik, J. Nonlin. Opt. Phys. Mater. 25, 1650051 (2016).

    Article  Google Scholar 

  12. I. S. Panyaev and D. G. Sannikov, J. Opt. Soc. Am. B 33, 220 (2016).

    Article  ADS  Google Scholar 

  13. K. A. Gorshkov, L. A. Ostrovskiy, and V. V. Papko, Sov. Phys. JETP 17, 209 (1976).

    Google Scholar 

  14. U. S. Kivshar, A. M. Kosevich, and O. A. Chubykalo, Phys. Lett. A 125, 35 (1987).

    Article  ADS  Google Scholar 

  15. M. M. Bogdan, I. V. Gerasimchuk, and A. S. Kovalev, J. Low Temp. Phys. 23, 145 (1997).

    Article  Google Scholar 

  16. U. S. Kivshar, A. M. Kosevich, and O. A. Chubykalo, Phys. Rev. A 41, 1677 (1990).

    Article  ADS  Google Scholar 

  17. I. V. Gerasimchuk and A. S. Kovalev, J. Low Temp. Phys. 26, 586 (2000).

    Article  Google Scholar 

  18. S. E. Savotchenko, Russ. Phys. J. 47, 556 (2004).

    Article  Google Scholar 

  19. H. Sakaguchi and B. A. Malomed, New J. Phys. 18, 025020 (2016).

    Article  ADS  Google Scholar 

  20. S. E. Savotchenko, Russ. Phys. J. 62, 1 (2019).

    Article  Google Scholar 

  21. S. E. Savotchenko, Tech. Phys. 64, 133 (2019).

    Article  Google Scholar 

  22. S. E. Savotchenko, Phys. Solid State 61, 575 (2019).

    Article  ADS  Google Scholar 

  23. S. E. Savotchenko, Opt. Spectrosc. 127, 159 (2019).

    Article  ADS  Google Scholar 

  24. E. C. Jarque and V. A. Malyshev, Opt. Commun. 142, 66 (1997).

    Article  ADS  Google Scholar 

  25. A. Schuzgen, N. Peyghambarian, and S. Hughes, Phys. Status Solidi B 206, 125 (1999).

    Article  ADS  Google Scholar 

  26. A. E. Kaplan, IEEE J. Quant. Electron. 21, 1538 (1985).

    Article  ADS  Google Scholar 

  27. R. H. Enns, S. S. Rangnekar, and A. E. Kaplan, Phys. Rev. A 35, 466 (1987).

    Article  ADS  Google Scholar 

  28. R. H. Enns, S. S. Rangnekar, and A. E. Kaplan, Phys. Rev. A 36, 1270 (1987).

    Article  ADS  Google Scholar 

  29. R. H. Enns and S. S. Rangnekar, Opt. Lett. 12, 108 (1987).

    Article  ADS  Google Scholar 

  30. P. I. Khadzhi and L. V. Fedorov, Sov. Tech. Phys. 36, 564 (1991).

    Google Scholar 

  31. N. N. Beletskii and E. A. Gasan, Phys. Solid State 36, 357 (1994).

    ADS  Google Scholar 

  32. K. D. Lyakhomskaya and P. I. Khadzhi, Tech. Phys. 45, 1457 (2000).

    Article  Google Scholar 

  33. S. E. Savotchenko, Roman. J. Phys. 65, 202 (2020).

    Google Scholar 

  34. S. E. Savotchenko, JETP Lett. 107, 455 (2018).

    Article  ADS  Google Scholar 

  35. S. E. Savotchenko, Opt. Spectrosc. 126, 473 (2019).

    Article  Google Scholar 

  36. S. E. Savotchenko, Opt. Spectrosc. 127, 159 (2019).

    Article  ADS  Google Scholar 

  37. S. E. Savotchenko, Mod. Phys. Lett. B 33, 1950385 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  38. P. I. Khadzhi, A. M. Rusanov, and S. L. Gaivan, Quantum Electron. 29, 539 (1999).

    Article  ADS  Google Scholar 

  39. A. V. Korovai and P. I. Khadzhi, Quantum Electron. 31, 937 (2001).

    Article  ADS  Google Scholar 

  40. P. I. Khadzhi and A. V. Korovai, Quantum Electron. 32, 711 (2002).

    Article  ADS  Google Scholar 

  41. V. E. Wood, E. D. Evans, and R. P. Kenan, Opt. Commun. 69, 156 (1988).

    Article  ADS  Google Scholar 

  42. J. M. Christian, G. S. McDonald, and P. Chamorro-Posada, J. Opt. Soc. Am. B 26, 2323 (2009).

    Article  ADS  Google Scholar 

  43. P. Roussignol, D. Ricard, J. Lukasik, and C. Flytzanis, J. Opt. Soc. Am. B 4, 5 (1987).

    Article  ADS  Google Scholar 

  44. J.-L. Coutaz and M. Kull, J. Opt. Soc. Am. B 8, 95 (1991).

    Article  ADS  Google Scholar 

  45. T. Catunda and L. A. Cury, J. Opt. Soc. Am. B 7, 1445 (1990).

    Article  ADS  Google Scholar 

  46. Q. Wang Song, C. Zhang, R. B. Gross, and R. R. Birde, Opt. Commun. 112, 296 (1994).

    Article  ADS  Google Scholar 

  47. Q. Wang Song, X. Wang, R. R. Birge, J. D. Downie, D. Timucin, and C. Gary, J. Opt. Soc. Am. B 15, 1602 (1998).

    Article  ADS  Google Scholar 

  48. S. Bian, J. Frejlich, and K. H. Ringhofer, Phys. Rev. Lett. 78, 4035 (1997).

    Article  ADS  Google Scholar 

  49. D. N. Christodoulides and M. I. Carvalho, J. Opt. Soc. Am. B 12, 1628 (1995).

    Article  ADS  Google Scholar 

  50. W. Krolikowski and B. Luther-Davies, Opt. Lett. 17, 1414 (1992).

    Article  ADS  Google Scholar 

  51. J. Herrmann, J. Opt. Soc. Am. B 8, 1507 (1991).

    Article  ADS  Google Scholar 

  52. S. Gatz and J. Herrmann, J. Opt. Soc. Am. B 8, 2296 (1991).

    Article  ADS  Google Scholar 

  53. A. E. Kaplan, Phys. Rev. Lett. 55, 1291 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  54. P. V. Elyutin and V. D. Krivchenkov, Quantum Mechanics, With Problems (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  55. R. Menzel, Photonics: Linear and Nonlinear Interactions of Laser Light and Matter (Springer Science, Berlin, 2007).

  56. M. Liu, D. A. Powell, Y. Zarate, and I. V. Shadrivov, Phys. Rev. X 8, 031077 (2018).

    Google Scholar 

  57. Surface Waves: New Trends and Developments, Ed. by F. Ebrahimi (IntechOpen, Rijeka, 2018).

    Google Scholar 

  58. Y. Jia, Y. Liao, L. Wu, Y. Shan, X. Dai, H. Cai, Y. Xiang, and D. Fan, Nanoscale 7, 4515 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Savotchenko.

Additional information

Translated by I. Nikitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savotchenko, S.E. The Effect of the Interaction of Excitations with the Interface between Nonlinear Media with a Switching on the Formation of Localized States. J. Exp. Theor. Phys. 131, 468–480 (2020). https://doi.org/10.1134/S1063776120080051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120080051

Navigation