Skip to main content
Log in

Enhancement of photocatalytic potential and recoverability of Fe3O4 nanoparticles by decorating over monoclinic zirconia

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Background

Photodegradation of organic pollutants is considered to be the most suitable and cheaper technique to counter the decontamination issues. Metal nanoparticles are considered to be the most effective heterogeneous photocatalysts for photodegradation of organic pollutants. Besides, iron oxide nanoparticles are well-known photocatalysts for degrading organic pollutants.

Methods

We reported the synthesis of neat iron oxide nanoparticles (Fe3O4 NPs) and zirconia supported iron oxide nanoparticles (Fe3O4/ZrO2 NPs) by facile chemical reduction technique for photodegradation ofa toxic azo dye namely methyl red.

Results

The XRD and FTIR analysis has demonstrated a crystalline phase Fe3O4 NPs. The morphological features via scanning electronic microscopy (FESEM) suggested agglomerated morphology of neat Fe3O4 NPs with 803.54 ± 5.11 nm average particle size and revealed the uniform morphology and homogenous dispersion of Fe3O4 NPs over ZrO2 surface in Fe3O4/ZrO2 nanocomposite. A polydispersity index (PDI) of 0.47 showed sufficient variations in the particle size of neat Fe3O4 NPs, which is also supported by the results obtained from atomic force microscopy (AFM), FESEM and Transmission Electron Microscopy (TEM). Fe3O4/ZrO2 NPs demonstrated efficient methyl red degradation over a short period of time under simulated light and degraded about ~ 91.0 ± 1.0% and 87.0 ± 1.0% dye in 40 min, under UV and visible light, respectively.

Conclusion

The excellent photodegradation efficacy and sustainability of Fe3O4/ZrO2 NPs can be attributed to the homogenous distribution of Fe3O4 NPs over ZrO2, which facilitates the generation of photoexcitons (electrons and holes), enhanced charge transfer and minimize the charge recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Mani P, Fidal VT, Bowman K, Breheny M, Chandra TS, Keshavarz T, Kyazze G. Degradation of azo dye (acid orange 7) in a microbial fuel cell: comparison between anodic microbial-mediated reduction and cathodic laccase-mediated oxidation. Front Energy Res. 2019. https://doi.org/10.3389/fenrg.2019.00101.

    Article  Google Scholar 

  2. Ajaz M, Rehman A, Khan Z, Nisar MA, Hussain S. Degradation of azo dyes by Alcaligenes aquatilis 3c and its potential use in the wastewater treatment. AMB Expr. 2019;9:64. https://doi.org/10.1186/s13568-019-0788-3.

    Article  CAS  Google Scholar 

  3. Singh PK, Singh RL. Bio-removal of azo dyes: a review. Int J Appl Sci Biotechnol. 2017;5:108–26.

    Article  CAS  Google Scholar 

  4. Zuorro A, Lavecchia R, Monaco MM, Iervolino G, Vaiano V. Photocatalytic degradation of azo dye reactive violet 5 on Fe-doped titania catalysts under visible light irradiation. Catalysts. 2019;9:645. https://doi.org/10.3390/catal9080645.

    Article  CAS  Google Scholar 

  5. Gicevic A, Hindija L, Karacic A. Toxicity of azo dyes in pharmaceutical industry. Int Conf Med Biol Eng. 2019;581–87.

  6. Foster SL, Estoque K, Voecks M, Rentz N, Greenlee LF. Removal of synthetic azo dye using bimetallic nickel-iron nanoparticles. J Nanomater. 2019. https://doi.org/10.1155/2019/9807605.

    Article  Google Scholar 

  7. Ahmad MA, Ahmed NAB, Adegoke KA, Bello OS. Sorption studies of methyl red dye removal using lemon grass (Cymbopogoncitratus). Chem Data Collect. 2019;22:100249.

    Article  Google Scholar 

  8. Hu Y, Zhang M, Xiao Z, Jiang T, Yan B, Li J. Photodegradation of methyl red under visible light by mesoporous carbon nitride. IOP Conf Ser Earth Environ Sci. 2018;121:022030. https://doi.org/10.1088/1755-1315/121/2/022030.

    Article  Google Scholar 

  9. Narayan RB, Goutham R, Srikanth B, Gopinath KP. A novel nano-sized calcium hydroxide catalyst prepared from clam shells for the photodegradation of methyl red dye. J Environ Chem Eng. 2018;6:3640–7.

    Article  CAS  Google Scholar 

  10. Jyoti K, Singh A. Green synthesis of nanostructured silver particles and their catalytic application in dye degradation. J Genet Eng Biotechnol. 2016;14:311–7.

    Article  Google Scholar 

  11. Sahoo C, Gupta AK, Pal A. Photocatalytic degradation of Methyl Red dye in aqueoussolutions under UV irradiation using Ag+ doped TiO2. Desalination. 2005;181:91–100.

    Article  CAS  Google Scholar 

  12. Dadfarnia S, Shabani AH, Moradi SE, Emami S. Methyl red removal from water by iron based metal-organic frameworks loaded onto iron oxide nanoparticle adsorbent. Appl Surf Sci. 2015;330:85–93.

    Article  CAS  Google Scholar 

  13. Mayathevar R, Arulanandham X. Adsorption of reactive magenta and methyl red from aqueous solution using activated carbons. Int J Curr Res. 2018;10:72565–74.

    CAS  Google Scholar 

  14. Zang Y. Removal of Methyl Red from aqueous solution by adsorption onto Mg-Al HTlc. Adv Mater Res. 2013;750–752:1426–9.

    Article  Google Scholar 

  15. Zaheer Z, Asfar AA, Aazam ES. Adsorption of methyl red on biogenic Ag@Fe nanocomposite adsorbent: Isotherms, kinetics and mechanisms. J Mol Liq. 2019;283:287–98.

    Article  CAS  Google Scholar 

  16. Enenebeaku CK, Okorocha NJ, Uchechi EE, Ukaga IC. Adsorption and equilibrium studies on the removal of methyl red from aqueous solution using white potato peel powder. Int Lett Chem Phys Astron. 2017;72:52–4.

    Article  Google Scholar 

  17. Muthuraman G, Teng TT. Extraction of methyl red from industrial wastewater using xylene as an extractant. Prog Nat Sci. 2009;19:1215–20.

    Article  CAS  Google Scholar 

  18. Abioye OP, Iroegu VT, Aransiola SA. Biodegradation of methyl red by staphylococcus aureus isolated from waste dump site. J Environ Sci Technol. 2015;8:131–8.

    Article  CAS  Google Scholar 

  19. Zhao M, Sun P, Du L, Wang G, Jia X, Zhao Y. Biodegradation of methyl red by Bacillus sp. strain UN2: decolorization capacity, metabolites characterization, and enzyme analysis. Environ SciPollut Res. 2014;21:6136–45.

    Article  CAS  Google Scholar 

  20. Sari IP, Simarani K. Decolorization of selected azo dye by Lysinibacillus fusiformis W1B6: biodegradation optimization, isotherm, and kinetic study biosorption mechanism. Adsorpt Sci Technol. 2019;37:492–508.

    Article  CAS  Google Scholar 

  21. Tavares MG, Silva LVA, Solano AMS, Tonholo J, Huitle CAM, Zanta CLPS. Electrochemical oxidation of Methyl Red using Ti/Ru0.3Ti0.7O2 and Ti/Pt anodes. ChemEng J. 2012;204–206:141–50.

    Google Scholar 

  22. Devi LG, Raju KSA, Kumar SG. Photodegradation of methyl red by advanced and homogeneous photo-Fenton’s processes: a comparative study and kinetic approach. J Environ Monit. 2009;11:1397–404.

    Article  CAS  Google Scholar 

  23. Kankeu EF, Webster A, Ntwampe IO, Waanders FB. Coagulation/flocculation potential of polyaluminium chloride and bentonite clay tested in the removal of methyl red and crystal violet. Arab J Sci Eng. 2017;42:1389–97.

    Article  Google Scholar 

  24. Khan I, Sadiq M, Khan I, Saeed K. Manganese dioxide nanoparticles/activated carbon composite as efficient UV and visible-light photocatalyst. Environ Sci Pollut Res. 2019;26:5140–54.

    Article  CAS  Google Scholar 

  25. Saeed K, Khan I. Efficient photodegradation of neutral red chloride dye in aqueous medium using graphene/cobalt-manganese oxides nanocomposite. Turk J Chem. 2017;41:391–8.

    Article  CAS  Google Scholar 

  26. Chiu Y, Chang TM, Chen C, Sone M, Hsu Y. Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts. 2019;9:430. https://doi.org/10.3390/catal9050430.

    Article  CAS  Google Scholar 

  27. Saeed K, Khan I, Gul T, Sadiq M. Efficient photodegradation of methyl violet dye using TiO2/Pt and TiO2/Pd photocatalysts. Appl Water Sci. 2017;7:3841–8.

    Article  CAS  Google Scholar 

  28. Valaskova M, Tokarsky J, Pavlovsky J, Prostejovsky T, Kocí K. α-Fe2O3 nanoparticles/vermiculite clay material: structural, optical and photocatalytic properties. Materials. 2019;12:1880. https://doi.org/10.3390/ma12111880.

    Article  CAS  Google Scholar 

  29. Liu Y, Sun N, Hu J, Li S, Qin G. Photocatalytic degradation properties ofα-Fe2O3 nanoparticles for dibutyl phthalate in aqueous solution system. R Soc Open Sci. 2018;5:172196. https://doi.org/10.1098/rsos.172196.

    Article  CAS  Google Scholar 

  30. Hjiri M, Aida MS, Neri G. NO2 Selective sensor based on α-Fe2O3 nanoparticles synthesized via hydrothermal technique. Sensors. 2019;19:167. https://doi.org/10.3390/s19010167.

    Article  CAS  Google Scholar 

  31. Ma T, Zheng L, Zhao Y, Xu Y, Zhang J, Liu X. Highly porous double-shelled hollow hematite nanoparticles for gas sensing. ACS Appl Nano Mater. 2019;2:2347–57.

    Article  CAS  Google Scholar 

  32. Dissanayake DMSN, Mantilaka MMMGPG, Palihawadana TC, Chandrakumara GTD, Silva RTD, Pitawala HMTGA, Silva KMN, Amaratunga GAJ. Facile and low-cost synthesis of pure hematite (α-Fe2O3) nanoparticles from naturally occurring laterites and their superior adsorption capability towards acid-dyes. RSC Adv. 2019;9:21249–212257.

    Article  CAS  Google Scholar 

  33. Naz S, Islam M, Tabassum S, Fernandas NF, Blanco EJC, Zia M. Green synthesis of hematite (α-Fe2O3) nanoparticles using Rhus punjabensis extract and their biomedical prospect in pathogenic diseases and cancer. J Mol Struct. 2019;1185:1–7.

  34. Ge Y, Hoque MIU, Qu Q. 1D Hematite-[α-Fe2O3]-nanorods prepared by green fabrication for supercapacitor electrodes. Electrochem Energy Technol. 2019;5:1–6.

    Article  CAS  Google Scholar 

  35. Kim J, Hwang J, Sun Y. Hassoun JA single layer of Fe3O4@TiO2 submicron spheres as a high-performance electrode for lithium-ion microbatteries. Sustain Energy Fuels. 2019;3:2675–87.

    Article  CAS  Google Scholar 

  36. Harnchana V, Chaiyachad S, Pimanpang S, Saiyasombat C, Srepusharawoot P, Amornkitbamrung V. Hierarchical Fe3O4-reduced graphene oxide nanocomposite grown on NaCl crystals for triiodide reduction in dye-sensitized solar cells. Sci Rep. 2019;9:1494. https://doi.org/10.1038/s41598-018-38050-z.

    Article  CAS  Google Scholar 

  37. Kumar A, Rana A, Sharma G, Naushad M, Muhtaseb AA, Guo C, Juez AI, Stadler FJ. High-performance photocatalytic hydrogen production and degradation of levofloxacin by wide spectrum-responsive Ag/Fe3O4 bridged SrTiO3/g-C3N4 plasmonic nanojunctions: joint effect of Ag and Fe3O4. ACS Appl Mater Interfaces. 2018;10:40474–90.

    Article  CAS  Google Scholar 

  38. Imran M, Abutaleb A, Ali MA, Ahamad T, Ansari AR, Shariq M, Lolla D, Khan A. UV light enabled photocatalytic activity of α-Fe2O3 nanoparticles synthesized via phase transformation. Mater Lett. 2020;258:126748.

    Article  CAS  Google Scholar 

  39. Gebrezgiabher M, Gebreslassie G, Gebretsadik T, Yeabyo G, Elemo F, Bayeh Y, Thomas M, Linert W. A C-Doped TiO2/Fe3O4 nanocomposite for photocatalytic dye degradation under natural sunlight irradiation. J Compos Sci. 2019;3:75. https://doi.org/10.3390/jcs3030075.

    Article  CAS  Google Scholar 

  40. Yin H, Zhao Y, Hua Q, Zhang J, Zhang Y, Xu X, Long Y, Tang J, Wang F. Controlled synthesis of hollow α-Fe2O3 microspheres assembled with ionic liquid for enhanced visible-light photocatalytic activity. Front Chem. 2019;7:58. https://doi.org/10.3389/fchem.2019.00058.

    Article  CAS  Google Scholar 

  41. Maji SK, Mukherjee N, Mondal A, Adhikary B. Synthesis, characterization and photocatalytic activity of a-Fe2O3 nanoparticles. Polyhedron. 2012;33:145–9.

    Article  CAS  Google Scholar 

  42. RazipNIM,Lee KM, Lai CW, Ong BH. Recoverability of Fe3O4/TiO2nanocatalyst in methyl orange degradation. Mater Res Express. 2019;6(7).https://doi.org/10.1088/2053-1591/ab176e

  43. Galvis HMT, Bitter JH, Khare CB, Ruitenbeek M, Dugulan AI, Jong KP. Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science. 2012;335:835. https://doi.org/10.1126/science.1215614.

    Article  CAS  Google Scholar 

  44. Lopez MCU, Lemus MAA, Hidalgo MC, Gonzalez RL, Owen PQ, Ruiz SO, Lopez SAU, Acosta J. Synthesis and characterization of ZnO-ZrO2 nanocomposites for photocatalytic degradation and mineralization of phenol. J Nanomater. 2019. https://doi.org/10.1155/2019/1015876.

    Article  Google Scholar 

  45. Saeed K, Sadiq M, Khan I, Ullah S, Ali N, Khan A. Synthesis, characterization, and photocatalytic application of Pd/ZrO2 and Pt/ZrO2. Appl Water Sci. 2018;8:60. https://doi.org/10.1007/s13201-018-0709-7.

    Article  CAS  Google Scholar 

  46. Kistan A, Kanchana V, Sakayasheela L, Sumathi J, Premkumar A, Selvam A, Ansari T. Titanium dioxide as a catalyst for photodegradation of various concentrations of methyl orange and methyl red dyes using Hg vapour lamp with constant pH. Orient J Chem. 2018;34:1000–10.

    Article  CAS  Google Scholar 

  47. Singh NK, Saha S, Pal A. Methyl red degradation under UV illumination and catalytic action of commercial ZnO: a parametric study. Desalin Water Treat. 2015;56:1066–76.

    Article  CAS  Google Scholar 

  48. Patil SM, Deshmukh SP, More KV, Shevale VB, Mullani SB, Dhodamani AG, Delekar SD. Sulfated TiO2/WO3 nanocomposite: an efficient photocatalyst for degradation of Congo red and methyl red dyes under visible light irradiation. Mater Chem Phys. 2018. https://doi.org/10.1016/j.matchemphys.2018.12.041.

    Article  Google Scholar 

  49. Kamel L, Anbia M. Preparation and evaluation of nanoporous-pyramids structured silicon powder as an effective photocatalyst for degradation of methyl red. Int J Environ Sci Technol. 2019;16:2101–8.

    Article  CAS  Google Scholar 

  50. Samadi S, Khalili E, Ghasri MRA. Degradation of methyl red under visible light using N,F-TiO2/SiO2/rGO nanocomposite. J Electron Mater. 2019;48:7836–45.

    Article  CAS  Google Scholar 

  51. Mishra K, Basavegowda N, Lee YR. Biosynthesis of Fe, Pd, and Fe–Pd bimetallic nanoparticles and their application as recyclable catalysts for [3 + 2] cycloaddition reaction: a comparative approach. Catal Sci Technol. 2015;5:2612–21.

    Article  CAS  Google Scholar 

  52. Kumar S, Kumar S, Tiwari S, Srivastava S, Srivastava M, Yadav BK, Kumar S, Tran TT, Dewan AK, Mulchandani A, Sharma JG, Maji S, Malhotra BD. Biofunctionalized nanostructured zirconia for biomedical application: a smart approach for oral cancer detection. Adv Sci. 2015;2:1500048. https://doi.org/10.1002/advs.201500048.

    Article  CAS  Google Scholar 

  53. Yang K, Peng H, Wen Y, Li N. Re-examination of characteristic FTIR spectrum of secondary layer in bilayer oleic acid-coated Fe3O4 nanoparticles. Appl Surf Sci. 2010;256:3093–7.

    Article  CAS  Google Scholar 

  54. Rashid H, Ahmad MS, Sadiq M, Aman R. Potent heterogenous catalyst for low temperature selective oxidation of cyclohexanol by molecular oxygen. J Chem. 2016. https://doi.org/10.1155/2016/1254796.

    Article  Google Scholar 

  55. Singh AK, Nakate UT. Microwave synthesis, characterization, and photoluminescence properties of nanocrystalline zirconia. Sci World J. 2014. https://doi.org/10.1155/2014/349457.

    Article  Google Scholar 

  56. Kumar A, Guo C, Sharma G, Pathania D, Naushad M, Kalia S, Dhiman P. Magnetically recoverable ZrO2/Fe3O4/chitosan nanomaterials for enhanced sunlight driven photoreduction of carcinogenic Cr(vi) and dechlorination & mineralization of 4-chlorophenol from simulated waste water. RSC Adv. 2016;6:13251–63.

    Article  CAS  Google Scholar 

  57. Khan I, Qurashi A. Shape controlled synthesis of copper vanadate platelet nanostructures, their optical band edges, and solar-driven water splitting properties. Sci Rep. 2017;7.

  58. Boruah PK, Borthakur P, Darabdhara G, Kamaja CK, Karbhal I, Shelke MV, Phukan P, Saikia D, Das MR. Sunlight assisted degradation of dye molecules and reduction of toxic Cr(vi) in aqueous medium using magnetically recoverable Fe3O4/reduced graphene oxide nanocomposite. RSC Adv. 2016;6:11049–63.

    Article  CAS  Google Scholar 

  59. Kambur A, Pozan GS, Boz I. Preparation, characterization and photocatalytic activity of TiO2–ZrO2 binary oxide nanoparticles. Appl Catal B-Environ. 2012;115–116:149–58.

    Article  Google Scholar 

  60. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, et al. Gaussian 09, revision C.01. Wallingford: Gaussian, Inc; 2009.

    Google Scholar 

  61. Vos AM, Nulens KHL, Proft FD, Schoonheydt RA, Geerlings P. Reactivity descriptors and rate constants for electrophilic aromatic substitution: acid zeolite catalyzed methylation of benzene and toluene. J Phys Chem B. 2002;106:2026–34.

    Article  CAS  Google Scholar 

  62. Wahab OO, Olasunkanmi LO, Govender KK, Govender PP. A DFT study of disperse yellow 119 degradation mechanism by hydroxyl radical attack. ChemistrySelect. 2018;3:12988–97.

    Article  CAS  Google Scholar 

  63. Turkten N, Cinar Z. Photocatalyticdecolorization of azo dyes on TiO2: Prediction of mechanism via conceptual DFT. Catal Today. 2017;287:169–75.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the department of Chemistry, Bacha Khan University Charsadda Pakistan, for providing research facilities and characterization tools.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Saeed.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, I., Zada, N., Khan, I. et al. Enhancement of photocatalytic potential and recoverability of Fe3O4 nanoparticles by decorating over monoclinic zirconia. J Environ Health Sci Engineer 18, 1473–1489 (2020). https://doi.org/10.1007/s40201-020-00563-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-020-00563-z

Keywords

Navigation