Skip to main content
Log in

Responses of Stream Geomorphic Indices to Piedmont Fault Activity in the Daqingshan Area of China

  • Seismogeology
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

A recent correlation of stream geomorphic indices to fault activity has revealed that stream geomorphologies in bedrock mountain areas are good records of local fault movements. The Daqingshan piedmont fault is one of the main active faults in the fault system on the northern margin of the Hetao Basin and has produced frequent large-scale earthquakes since the Late Pleistocene. In the present study, following the segmentation regime of previous studies, we divide the fault zone into five segments, namely, the Baotou, Tuyouqi West, Tuzuoqi West, Bikeqi, and Hohhot segments, and we discuss the relationship between the drainage basin geomorphology and the piedmont fault activity in the Daqingshan area using 30 m spatial resolution Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) data. We use a range of geomorphic indices to examine the drainage basins in the Daqingshan area, including the channel steepness index (ksn), slope, hypsometric integral (HI), relief degree of land surface (RDLS), and stream lengthgradient index (SL), extracted with ArcGIS and MATLAB, and we also consider local lithologic and climate aspects. Furthermore, we compare the geomorphic indices with the slip rates of individual segments of the Daqingshan piedmont fault and paleoseismic data. The results show that the geomorphic indices of drainage basins in the Daqingshan area are primarily affected by the piedmont fault activity in the Daqingshan area. The geomorphic indices also demonstrate that piedmont fault activity has been the most intense in the middle segment of this fault system since the Late Quaternary and decreases towards the two sides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Chang, Z., Wang, J., Bai, S., et al., 2015. Comparison of Hypsometric Integral Methods. Journal of Arid Land Resources and Environment, 29: 171–175 (in Chinese with English Abstract)

    Google Scholar 

  • Davis, W. M., 1899. The Geographical Cycle. The Geographical Journal, 14(5): 481–504. https://doi.org/10.2307/1774538

    Article  Google Scholar 

  • Deng, Q., Cheng, S., Min, W., et al., 1999. Discussion on Cenozoic Tectonics and Dynamics of Ordos Block. Journal of Geomechanics, 5(3): 13–21 (in Chinese with English Abstract)

    Google Scholar 

  • Deng, Q. D., Ran, Y. K., Yang, X. P., et al., 2007. Map of Active Tectonics of China (1: 4 000 000). Seismology Press, Beijing (in Chinese)

    Google Scholar 

  • Dong, S. P., Zhang, P. Z., Zhang, H. P., et al., 2018. Drainage Responses to the Activity of the Langshan Range-Front Fault and Tectonic Implications. Journal of Earth Science, 29(1): 193–209. https://doi.org/10.1007/s12583-017-0902-8

    Article  Google Scholar 

  • Duvall, A., Kirby, E., Burbank, D., 2004. Tectonic and Lithologic Controls on Bedrock Channel Profiles and Processes in Coastal California. Journal of Geophysical Research, 109(F3): F03002. https://doi.org/10.1029/2003jf000086

    Article  Google Scholar 

  • Hack, J. T., 1973. Stream-Profile Analysis and Stream-Gradient Index. Journal of Research of the US Geological Survey, 1(4): 421–429

    Google Scholar 

  • He, C. Q., Rao, G., Yang, R., et al., 2019. Divide Migration in Response to Asymmetric Uplift: Insights from the Wula Shan Horst, North China. Geomorphology, 339: 44–57. https://doi.org/10.1016/j.geomorph.2019.04.024

    Article  Google Scholar 

  • He, Z. T., Ma, B. Q., 2015. Holocene Paleoearthquakes of the Daqingshan Fault Detected from Knickpoint Identification and Alluvial Soil Profile. Journal of Asian Earth Sciences, 98: 261–271. https://doi.org/10.1016/j.jseaes.2014.11.025

    Article  Google Scholar 

  • He, Z. T., Ma, B. Q., Long, J. Y., et al., 2017. Recent Ground Fissures in the Hetao Basin, Inner Mongolia, China. Geomorphology, 295: 102–114. https://doi.org/10.1016/j.geomorph.2017.07.008

    Article  Google Scholar 

  • He, Z. T., Ma, B. Q., Long, J. Y., et al., 2018. New Progress in Paleoearthquake Studies of the East Sertengshan Piedmont Fault, Inner Mongolia, China. Journal of Earth Science, 29(2): 441–451. https://doi.org/10.1007/s12583-017-0937-z

    Article  Google Scholar 

  • He, Z. T., Ma, B. Q., Lu, H. F., 2007. Active Fault Segmentation and the Identification of Potential Seismic Zones along the Daqingshan Piedmont Fault. Seismology and Geology, 29(4): 765–775 (in Chinese with English Abstract)

    Google Scholar 

  • He, J., Li, Y., Sandvol, E., et al., 2019. Tomographic Pn Velocity and Anistropy Structure in Mongolia and the Adiacent Regions. Journal of Geophysical Research: Solid Earth, 124: 3662–3679. https://doi.org/10.1029/2018jb016440

    Google Scholar 

  • Hu, X., Pan, B., Kirby, E., et al., 2010. The Difference in the Rate of Uplift of the Northern Wing of the Qilian Mountains as Reflected by the Steepness Index of the River. Science Bulletin, 55(23): 2329–2338 (in Chinese with English Abstract)

    Google Scholar 

  • Inner Mongolia Bureau of Geology and Mineral Resources, 1991. Regional Geological Records of Inner Mongolia. Geological Publishing House, Beijing (in Chinese with English Abstract)

    Google Scholar 

  • Ji, Y., Gao, H., Pan, B., 2011. Implication of Active Structure in the Upper Reaches of Weihe River Basin from Stream Length-Gradient Index (Sl Index) and Hack Profile. Journal of Lanzhou University (Natural Sciences), 47(4): 1–6 (in Chinese with English Abstract)

    Google Scholar 

  • Jiang, W., Xiao, Z., Wan, H., et al., 2001. The Segmentation Character of Seismic Surface Ruptures on the Piedmont Active Fault of Mt. Daqingshan, Inner Mongolia. Seismology Geology, 23(1): 24–34 (in Chinese with English Abstract)

    Google Scholar 

  • Jansen, J. D., 2006. Flood Magnitude-Frequency and Lithologic Control on Bedrock River Incision in Post-Orogenic Terrain. Geomorphology, 82(1/2): 39–57. https://doi.org/10.1016/j.geomorph.2005.08.018

    Article  Google Scholar 

  • Kirby, E., Whipple, K. X., 2012. Expression of Active Tectonics in Erosional Landscapes. Journal of Structural Geology, 44: 54–75. https://doi.org/10.1016/j.jsg.2012.07.009

    Article  Google Scholar 

  • Li, K., Wu, W., Yang, F., et al., 1994. Segmentation of Daqingshan Piedmont Active Fault. Seismological Society of China. Seismic Geology Committee. Research on Active Faults in China. Seismological Press, Beijing (in Chinese)

    Google Scholar 

  • Li, W., Huang, R., Pei, X., et al., 2015. Study on Geological Disasters Caused by Haiyuan M8.5 Earthquake in 1920 Based on Google Earth. Journal of Catastrophology, 30(2): 26–31 (in Chinese with English Abstract)

    Google Scholar 

  • Liang, K., Ma, B. Q., Li, D. W., et al., 2019. Quaternary Activity of the Zhuozishan West Piedmont Fault Provides Insight into the Structural Development of the Wuhai Basin and Northwestern Ordos Block, China. Tectonophysics, 754: 56–72. https://doi.org/10.1016/j.tecto.2019.02.004

    Article  Google Scholar 

  • Liang, M. J., Zhou, R. J., Yan, L., et al., 2014. The Relationships between Neotectonic Activity of the Middle Segment of Dari Fault and Its Geomorphological Response, Qinghai Province, China. Seismology Geology, 36(1): 28–38 (in Chinese with English Abstract)

    Google Scholar 

  • Liang, O. B., Ren, J. J., Lu, Y. W., 2018. The Response of Fluvial Geomorphologic Characteristics of the Fujiang Drainge Basin to Activity of the Huya Fault Zone. Seismology and Geology, 40(01): 42–56 (in Chinese with English Abstract)

    Google Scholar 

  • Lu, Y., Dong, Y., Feng, X., et al., 2014. Characteristics of Geological Relics Due to 1556 Huaxian Great Earthquake in Guanzhong Area of Shaanxi Province, China. Journal of Engineering Geology, 22(2): 300–308 (in Chinese with English Abstract)

    Google Scholar 

  • Ma, B., Li, K., Wu, W., 2000. Segmentation of the Daqingshan Piedmont Fault. Institute of Crustal Dynamics of State Seismological Bureau, Collected Works on Crustal Tectonics and Crustal Dynamics. Seismological Press, Beijing (in Chinese with English Abstract)

    Google Scholar 

  • Ma, B. Q., Li, K., Wu, W. M., et al., 1999. Features and Neotectonic Significance of River Valley Landforms in Mt. Daqingshan. Acta Geographica Sinica, 66(4): 327–334 (in Chinese with English Abstract)

    Google Scholar 

  • Ma, B. Q., Li, D. W., Guo, W. S., 2004. Geomorphological Response to Environmental Changes during the Late Stage of Late Pleistocene in Hubao Basin. Quaternary Sciences, 24(6): 630–637 (in Chinese with English Abstract)

    Google Scholar 

  • Middleton, T. A., Walker, R. T., Parsons, B., et al., 2016a. A Major, Intraplate, Normal-Faulting Earthquake: The 1739 Yinchuan Event in Northern China. Journal of Geophysical Research: Solid Earth, 121(1): 293–320. https://doi.org/10.1002/2015jb012355

    Google Scholar 

  • Middleton, T. A., Walker, R. T., Rood, D. H., et al., 2016b. The Tectonics of the Western Ordos Plateau, Ningxia, China: Slip Rates on the Luoshan and East Helanshan Faults. Tectonics, 35(11): 2754–2777. https://doi.org/10.1002/2016tc004230

    Article  Google Scholar 

  • Molnar, P., Anderson, R. S., Anderson, S. P., 2007. Tectonics, Fracturing of Rock, and Erosion. Journal of Geophysical Research, 112(F3): F03014. https://doi.org/10.1029/2005jf000433

    Article  Google Scholar 

  • Nie, Z., Wu, W., Ma, B., et al., 2010. Surface Rupture of the A. D. 849 Earthquake Occurred to the East of Baotou City, China, and Discussion on Its Parameters. Acta Seismologica Sinica, 32(1): 94–107 (in Chinese with English Abstract)

    Google Scholar 

  • Ouimet, W. B., Whipple, K. X., Granger, D. E., 2009. Beyond Threshold Hillslopes: Channel Adjustment to Base-Level Fall in Tectonically Active Mountain Ranges. Geology, 37(7): 579–582. https://doi.org/10.1130/g30013a.1

    Article  Google Scholar 

  • Pike, R. J., Wilson, S. E., 1971. Elevation-Relief Ratio, Hypsometric Integral, and Geomorphic Area-Altitude Analysis. Geological Society of America Bulletin, 82(4): 1079–1084. https://doi.org/10.1130/0016-7606(1971)82[1079:erhiag]2.0.co;2

    Article  Google Scholar 

  • Ran, Y. K., Zhang, P. Z., Chen, L. C., 2003. Research on the Completeness of Paleoseismic Activity History since Late Quaternary along the Daqingshan Piedmont Fault in Hetao Depression Zone, North China. Earth Science Frontiers, 10: 207–216 (in Chinese with English Abstract)

    Google Scholar 

  • Ren, J., Niu, B., Wang, J., et al., 2013. International Geological Map of Asia (1: 5 000 000). Geological Publishing House, Beijing (in Chinese)

    Google Scholar 

  • Research Group of Active Fault System around Ordos Massif, 1988. Active Fault System around Ordos Massif. State Seismological Bureau, Seismological Press, Beijing (in Chinese)

    Google Scholar 

  • Scherler, D., Bookhagen, B., Strecker, M. R., 2014. Tectonic Control on 10Be-Derived Erosion Rates in the Garhwal Himalaya, India. Journal of Geophysical Research: Earth Surface, 119(2): 83–105. https://doi.org/10.1002/2014jf003142

    Google Scholar 

  • Snyder, N. P., Whipple, K. X., Tucker, G. E., et al., 2000. Landscape Response to Tectonic Forcing: Digital Elevation Model Analysis of Stream Profiles in the Mendocino Triple Junction Region, Northern California. Geological Society of America Bulletin, 112(8): 1250–1263. https://doi.org/10.1130/0016-7606(2000)112<1250:lrttfd>2.0.co;2

    Article  Google Scholar 

  • Strahler, A. N., 1952. Hypsometric (Area-Altitude) Analysis of Erosional Topography. Geological Society of America Bulletin, 63(11): 1117–1142. https://doi.org/10.1130/0016-7606(1952)63[1117:haaoet]2.0.co;2

    Article  Google Scholar 

  • Wang, D., Chen, Y. G., Wang, Q., et al., 2018. Complex Rupture of the 13 November 2016 Mw 7.8 Kaikoura, New Zealand Earthquake: Comparison of High-Frequency and Low-Frequency Observations. Tectonophysics, 733: 100–107. https://doi.org/10.1016/j.tecto.2018.02.004

    Article  Google Scholar 

  • Wang, Y., Zhang, H., Zheng, D., 2016. Stream-Power Incision Model and Its Implications: Discussion on the Urgency of Studying Bedrock Channel across the Tibetan Plateau. Quaternary Sciences, 36(4): 884–897. https://doi.org/10.11928/j.issn.1001-7410.2016.0

    Google Scholar 

  • Whipple, K. X., Kirby, E., Brocklehurst, S. H., 1999. Geomorphic Limits to Climate-Induced Increases in Topographic Relief. Nature, 401(6748): 39–43. https://doi.org/10.1038/43375

    Article  Google Scholar 

  • Whipple, K. X., Tucker, G. E., 1999. Dynamics of the Stream-Power River Incision Model: Implications for Height Limits of Mountain Ranges, Landscape Response Timescales, and Research Needs. Journal of Geophysical Research: Solid Earth, 104(B8): 17661–17674. https://doi.org/10.1029/1999jb900120

    Article  Google Scholar 

  • Whipple, K. X., Hancock, G. S., Anderson, R. S., 2000. River Incision into Bedrock: Mechanics and Relative Efficacy of Plucking, Abrasion, and Cavitation. Geological Society of America Bulletin, 112(3): 490–503. https://doi.org/10.1130/0016-7606(2000)112<490:riibma>2.0.co;2

    Article  Google Scholar 

  • Whipple, K. X., 2004. Bedrock Rivers and the Geomorphology of Active Orogens. Annual Review of Earth and Planetary Sciences, 32(1): 151–185. https://doi.org/10.1146/annurev.earth.32.101802.120356

    Article  Google Scholar 

  • Whipple, K. X., Wobus, C., Kirby, E., et al., 2007. New Tools for Quantitative Geomorphology: Extraction and Interpretation of Stream Profifiles from Digital Topographic Data. In: Short Course Presented at the Geological Society of America Annual Meeting. Geomorphtools, Boulder, CO. 1–26

  • Xin, Z., Xu, J., Ma, Y., 2008. Hypsometric Integral Analysis and Its Sediment Yield Implications in the Loess Plateau, China. Journal of Mountan Science, 3: 335–363 (in Chinese with English Abstract)

    Google Scholar 

  • Xu, Q., Ji, J., Zhao, W., et al., 2017. Uplift-Exhumation History of Daqing Mountain, Inner Mongolia since Late Mesozoic. Acta Scientiarum Naturalium Universitatis Pekinensis, 53(1): 57–65 (in Chinese with English Abstract)

    Google Scholar 

  • Xu, Y. R., He, H. L., Li, W. Q., et al., 2018. New Evidences for Amendment of Macro-Epicenter Location of 1303AD Hongtong Earthquake. Seismology and Geology, 40: 945–966 (in Chinese with English Abstract)

    Google Scholar 

  • Yang, Z. R., 1998. The Preliminary Study on the Climate and Environment during the Megathermal of the Holocene in Middle-West Inner Mongolia. Scientia Geographica Sinica, 18(5): 88–94 (in Chinese with English Abstract)

    Google Scholar 

  • Zhang, H. P., Zhang, P. Z., Fan, Q. C., 2011. Initiation and Recession of the Fluvial Knickpoints: A Case Study from the Yalu River-Wangtian’e Volcanic Region, Northeastern China. Science China Earth Sciences, 54(11): 1746–1753. https://doi.org/10.1007/s11430-011-4254-6

    Article  Google Scholar 

  • Zhang, Y., Sun, L. X., Zhang, T. F., et al., 2019. Geochronology, Geochemistry and Its Tectonic Significance of the Early Paleozoic Magmatic Rocks in Northern Langshan, Inner Mongolia. Journal of Earth Science, 44(1): 179–192. https://doi.org/10.3799/dqkx.2018.305

    Google Scholar 

  • Zhou, J., Li, W. C., 2017. Research on Recent Deformation Characteristics around Ordos Massif Using CMONOC GPS Reference Station Data. Seismological and Geomagnetic Observation and Research, 37(1): 88–95 (in Chinese with English Abstract)

    Google Scholar 

Download references

Acknowledgments

This work was supported by a research grant from the Institute of Crustal Dynamics, China Earthquake Administration (No. ZDJ2019-21) and the National Natural Science Foundation of China (Nos. 41872227, 41602221). We thank the anonymous reviewers and the editor for their help in improving the manuscript. The final publication is available at Springer via https://doi.org/10.1007/s12583-020-1321-y.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongtai He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., He, Z. Responses of Stream Geomorphic Indices to Piedmont Fault Activity in the Daqingshan Area of China. J. Earth Sci. 31, 978–987 (2020). https://doi.org/10.1007/s12583-020-1321-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-020-1321-y

Key Words

Navigation