Skip to main content
Log in

Diagenetic and Reservoir Quality Variation of Miocene Sandstone Reservoir Analogues from Three Basins of Southern California, USA

  • Petroleum, Natural Gas Geology
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

The Miocene sandstone deposits in the Southern California region are important hydrocarbon reservoirs. However, their development has been very challenging due to the wide variability in their reservoir quality. These sandstones have been studied from three sedimentary basins by petrographic thin section, scanning electron microscope, and X-ray diffraction to evaluate and compare the influence of diagenesis on their reservoir quality in these basins. Four petrofacies, namely P1 (sand injectite or dyke), P2 (sub-marine fan), P3 (turbidite and marine-influenced alluvial fans) and P4 (continental sandstones) have been identified. P1 and P2 characterise the sandstones in the San Joaquin forearc basin and are affected by kaolinite and extensive early calcite diagenesis. P3 and P4 delineate the sandstones in the Cajon Valley and Salton Trough strike-slip basins and are dominated by smectite, mixed illite-smectite, early calcite and late calcite diagenesis. Early calcite cement in P3 and P4 is in lower proportion than in P1 and P2. Although the dissolution of these sandstones by acidic fluids did not have a pattern, it, however, has the most considerable influence on P2 creating moldic pores which are expected to increase pore connectivity. The relatively abundant dissolution pores in P2, together with the absence of late authigenic calcite and illite clay in comparison to the other petrofacies studied are likely to make this sandstone facies the best reservoir targets in the Southern California region. These rocks are analogous to producing reservoirs in the region. However, because, petroleum accumulation in these reservoirs are compartmentalized by early calcite cement, maximum recovery using acidified fluids is recommended to dissolve the calcite-filled pores in order to increase connectivity of their pore network and enhance flow potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References Cited

  • Amorosi, A., Zuffa, G. G., 2011. Sand Composition Changes across Key Boundaries of Siliciclastic and Hybrid Depositional Sequences. Sedimentary Geology, 236(1/2): 153–163. https://doi.org/10.1016/j.sedgeo.2011.01.003

    Article  Google Scholar 

  • Beard, D. C., Weyl, P. K., 1973. Influence of Texture on Porosity and Permeability of Unconsolidated Sand. AAPG Bulletin, 57(2): 349–369. https://doi.org/10.2118/4736-pa

    Google Scholar 

  • Beigi, M., Jafarian, A., Javanbakht, M., et al., 2017. Facies Analysis, Diagenesis and Sequence Stratigraphy of the Carbonate-Evaporite Succession of the Upper Jurassic Surmeh Formation: Impacts on Reservoir Quality (Salman Oil Field, Persian Gulf, Iran). Journal of African Earth Sciences, 129: 179–194. https://doi.org/10.1016/j.jafrearsci.2017.01.005

    Article  Google Scholar 

  • Ben-Avraham, Z., Lyakhovsky, V., Schubert, G., 2010. Drop-Down Formation of Deep Basins along the Dead Sea and Other Strike-Slip Fault Systems. Geophysical Journal International, 181(1): 185–197. https://doi.org/10.1111/j.1365-246x.2010.04525.x

    Article  Google Scholar 

  • Bjørlykke, K., Jahren, J., 2010. Sandstone and Sandstone Reservoirs. In: Børlykke, K., ed., Petroleum Geoscience: From Sedimentary Environments to Rock Physics, Springer, Berlin. 113–140

    Chapter  Google Scholar 

  • Bjørlykke, K., 2014. Relationships between Depositional Environments, Burial History and Rock Properties. Some Principal Aspects of Diagenetic Process in Sedimentary Basins. Sedimentary Geology, 301: 1–14. https://doi.org/10.1016/j.sedgeo.2013.12.002

    Article  Google Scholar 

  • Bloch, S., 1994. Secondary Porosity in Sandstones: Significance, Origin, Relationship to Subaerial Unconformities and Effect on Predrill Reservoir Quality Prediction. In: Wilson, M. D., ed., Reservoir Quality Assessment and Prediction in Clastic Rocks, SEPM Short Course Notes, 30: 137–160

    Google Scholar 

  • Blott, S. J., Pye, K., 2001. GRADISTAT: A Grain Size Distribution and Statistics Package for the Analysis of Unconsolidated Sediments. Earth Surface Processes and Landforms, 26(11): 1237–1248. https://doi.org/10.1002/esp.261

    Article  Google Scholar 

  • Bodnar, R. J., 1990. Petroleum Migration in the Miocene Monterey Formation, California, USA: Constraints from Fluid-Inclusion Studies. Mineralogical Magazine, 54(375): 295–304. https://doi.org/10.1180/minmag.1990.054.375.15

    Article  Google Scholar 

  • Boggs, S. J., 2006. Principles of Sedimentology and Stratigraphy, Pearson Prentice Hall, Upper Saddle River, New Jersey. 74–116

    Google Scholar 

  • Boles, J. R., Ramseyer, K., 1987. Diagenetic Carbonate in Miocene Sandstone Reservoir, San Joaquin Basin, California. AAPG Bulletin, 71(12): 1475–1487. https://doi.org/10.1029/jb092ib13p14177

    Google Scholar 

  • Bridges, R. A., Castle, J. W., 2003. Local and Regional Tectonic Control on Sedimentology and Stratigraphy in a Strike-Slip Basin: Miocene Temblor Formation of the Coalinga Area, California, USA. Sedimentary Geology, 158(3/4): 271–297. https://doi.org/10.1016/s0037-0738(02)00314-7

    Article  Google Scholar 

  • Caracciolo, L., Arribas, J., Ingersoll, R. V., et al., 2013. The Diagenetic Destruction of Porosity in Plutoniclastic Petrofacies: The Miocene Diligencia and Eocene Maniobra Formations, Orocopia Mountains, Southern California, USA. Geological Society, London, Special Publications, 386(1): 49–62. https://doi.org/10.1144/sp386.9

    Article  Google Scholar 

  • Cecil, M. R., Saleeby, Z., Saleeby, J., et al., 2014. Pliocene-Quaternary Subsidence and Exhumation of the Southeastern San Joaquin Basin, California, in Response to Mantle Lithosphere Removal. Geosphere, 10(1): 129–147. https://doi.org/10.1130/ges00882.1

    Article  Google Scholar 

  • De Ros, L. F., Goldberg, K., 2007. Reservoir Petrofacies: A Tool for Quality Characterization and Prediction. AAPG Annual Conference and Exhibition, 6: 6

    Google Scholar 

  • Dickinson, W. R., 1995. Forearc Basins. In: Busby, C. J., Ingersoll, R. V., eds., Tectonics of Sedimentary Basins, Blackwell, Cambridge. 221–261

    Google Scholar 

  • Dorsey, R. J., Housen, B. A., Janecke, S. U., et al., 2011. Stratigraphic Record of Basin Development within the San Andreas Fault System: Late Cenozoic Fish Creek-Vallecito Basin, Southern California. Geological Society of America Bulletin, 123(5/6): 771–793. https://doi.org/10.1130/b30168.1

    Article  Google Scholar 

  • Feldman, M. D., Kwon, S. T., Boles, J. R., et al., 1993. Diagenetic Mass Transport in the Southern San Joaquin Basin, California, U.S.A.: Implications from the Strontium Isotopic Composition of Modern Pore Fluids. Chemical Geology, 110: 329–343

    Article  Google Scholar 

  • Folk, R. L., 1980. Petrology of Sedimentary Rocks, Hemphill’s Book Store, Austin. 184

    Google Scholar 

  • Goodman, E. D., Malin, P. E., 1992. Evolution of the Southern San Joaquin Basin and Mid-Tertiary “Transitional” Tectonics, Central California. Tectonics, 11(3): 478–498. https://doi.org/10.1029/91tc02871

    Article  Google Scholar 

  • Hakimi, M. H., Shalaby, M. R., Abdullah, W. H., 2012. Diagenetic Characteristics and Reservoir Quality of the Lower Cretaceous Biyadh Sandstones at Kharir Oilfield in the Western Central Masila Basin, Yemen. Journal of Asian Earth Sciences, 51: 109–120. https://doi.org/10.1016/j.jseaes.2012.03.004

    Article  Google Scholar 

  • Harper, D. A., Longstaffe, F. J., Wadleigh, M. A., et al., 1995. Secondary K-Feldspar at the Precambrian-Paleozoic Unconformity, Southwestern Ontario. Canadian Journal of Earth Sciences, 32(9): 1432–1450. https://doi.org/10.1139/e95-116

    Article  Google Scholar 

  • Harrison, C. P., Graham, S. A., 1999. Upper Miocene Stevens Sandstone, San Joaquin Basin, California: Reinterpretation of a Petroliferous, Sand-Rich, Deep-Sea Depositional System. AAPG Bulletin, 83: 898–924. https://doi.org/10.1111/meca.12024

    Google Scholar 

  • Hayes, M. J., Boles, J. R., 1993. Evidence for Meteoric Recharge in the San Joaquin Basin, California, Provided by Isotopic and Trace Element Chemistry of Calcite, Mar. Petrol. Geol., 10: 135–144. https://doi.org/10.1016/0264-8172(93)90018-n

    Article  Google Scholar 

  • Heizler, M. T., Harrison, T. M., 1991. The Heating Duration and Provenance Age of Rocks in the Salton Sea Geothermal Field, Southern California. Journal of Volcanology and Geothermal Research, 46(1/2): 73–97. https://doi.org/10.1016/0377-0273(91)90077-d

    Article  Google Scholar 

  • Houseknecht, W. D., 1987. Assessing the Relative Importance of Compaction Processes and Cementation to Reduction of Porosity in Sandstones. Bulletin of American Association of Petroleum Geologists, 71: 633–642

    Google Scholar 

  • Hulen, J. B., Pulka, F. S., 2001. Newly-Discovered, Ancient Extrusive Rhyolite in the Salton Sea Geothermal Field, Imperial Valley, California: Implication for Reservoir Characterization and Duration of Volcanism in the Salton Trough. Proceedings, Twenty-Sixth Workshop on Geothermal Reservoir Engineering, 168: 16

    Google Scholar 

  • Jardim, C. M., De Ros, L. F., Ketzer, J. M., 2011. Reservoir Quality Assessment and Petrofacies of the Lower Cretaceous Siliciclastic, Carbonate and Hybrid Arenites from the Jequitinhonha Basin, Eastern Brazil. Journal of Petroleum Geology, 34(3): 305–335. https://doi.org/10.1111/j.1747-5457.2011.00507.x

    Article  Google Scholar 

  • Jiang, S., Wang, H., Cai, D. S., et al., 2010. The Secondary Porosity and Permeability Characteristics of Tertiary Strata and Their Origins, Liaodong Bay Basin, China. Energy Exploration & Exploitation, 28(4): 207–222. https://doi.org/10.1260/0144-5987.28A207

    Article  Google Scholar 

  • Jung, B., Garven, G., Boles, J. R., 2014. Effects of Episodic Fluid Flow on Hydrocarbon Migration in the Newport-Inglewood Fault Zone, Southern California. Geofluids, 14(2): 234–250. https://doi.org/10.1111/gfl.12070

    Article  Google Scholar 

  • Ketzer, J. M., Holz, M., Morad, S., et al., 2003. Sequence Stratigraphic Distribution of Diagenetic Alterations in Coal-Bearing, Paralic Sandstones: Evidence from the Rio Bonito Formation (Early Permian), Southern Brazil. Sedimentology, 50(5): 855–877. https://doi.org/10.1046/j.1365-3091.2003.00586.x

    Article  Google Scholar 

  • Ketzer, J. M., Morad, S., 2006. Predictive Distribution of Shallow Marine, Low-Porosity (Pseudomatrix-Rich) Sandstones in a Sequence Stratigraphic Framework—Example from the Ferron Sandstone, Upper Cretaceous, USA. Marine and Petroleum Geology, 23(1): 29–36. https://doi.org/10.1016/j.marpetgeo.2005.05.001

    Article  Google Scholar 

  • Lai, J., Wang, G. W., Ran, Y., et al., 2015. Predictive Distribution of High-Quality Reservoirs of Tight Gas Sandstones by Linking Diagenesis to Depositional Facies: Evidence from Xu-2 Sandstones in the Penglai Area of the Central Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 23: 97–111. https://doi.org/10.1016/j.jngse.2015.01.026

    Article  Google Scholar 

  • Lai, J., Wang, G. W., Ran, Y., et al., 2016. Impact of Diagenesis on the Reservoir Quality of Tight Oil Sandstones: The Case of Upper Triassic Yanchang Formation Chang 7 Oil Layers in Ordos Basin, China. Journal of Petroleum Science and Engineering, 145: 54–65. https://doi.org/10.1016/j.petrol.2016.03.009

    Article  Google Scholar 

  • Lan, C. L., Yang, M. H., Zhang, Y. Z., 2016. Impact of Sequence Stratigraphy, Depositional Facies and Diagenesis on Reservoir Quality: A Case Study on the Pennsylvanian Taiyuan Sandstones, Northeastern Ordos Basin, China. Marine and Petroleum Geology, 69: 216–230. https://doi.org/10.1016/j.marpetgeo.2015.09.009

    Article  Google Scholar 

  • Li, Y. J., Shao, L. Y., Eriksson, K. A., et al., 2014. Linked Sequence Stratigraphy and Tectonics in the Sichuan Continental Foreland Basin, Upper Triassic Xujiahe Formation, Southwest China. Journal of Asian Earth Sciences, 88: 116–136. https://doi.org/10.1016/j.jseaes.2014.02.025

    Article  Google Scholar 

  • Lundegard, P. D., 1992. Sandstone Porosity Loss; A “Big Picture” View of the Importance of Compaction. Journal of Sedimentary Research, 62(2): 250–260. https://doi.org/10.1306/d42678d4-2b26-11d7-8648000102c1865d

    Article  Google Scholar 

  • Lutz, R., Gaedicke, C., Berglar, K., et al., 2011. Petroleum Systems of the Simeulue Fore-Arc Basin, Offshore Sumatra, Indonesia. AAPG Bulletin, 95(9): 1589–1616. https://doi.org/10.1306/01191110090

    Article  Google Scholar 

  • Mahon, K. I., Harrison, T. M., McKeegan, K. D., 1998. The Thermal and Cementation Histories of a Sandstone Petroleum Reservoir, Elk Hills, California. Chemical Geology, 152(3/4): 257–271. https://doi.org/10.1016/s0009-2541(98)00116-8

    Article  Google Scholar 

  • Mansurbeg, H., Morad, S., Salem, A., et al., 2008. Diagenesis and Reservoir Quality Evolution of Palaeocene Deep-Water, Marine Sandstones, the Shetland-Faroes Basin, British Continental Shelf. Marine and Petroleum Geology, 25(6): 514–543. https://doi.org/10.1016/j.marpetgeo.2007.07.012

    Article  Google Scholar 

  • Marcussen, Ø., Maast, T. E., Mondol, N. H., et al., 2010. Changes in Physical Properties of a Reservoir Sandstone as a Function of Burial Depth—The Etive Formation, Northern North Sea. Marine and Petroleum Geology, 27(8): 1725–1735. https://doi.org/10.1016/j.marpetgeo.2009.11.007

    Article  Google Scholar 

  • McKinley, J. M., Atkinson, P. M., Lloyd, C. D., et al., 2011. How Porosity and Permeability Vary Spatially with Grain Size, Sorting, Cement Volume, and Mineral Dissolution in Fluvial Triassic Sandstones: The Value of Geostatistics and Local Regression. Journal of Sedimentary Research, 81(12): 844–858. https://doi.org/10.2110/jsr.2011.71

    Article  Google Scholar 

  • McKinley, J. M., Worden, R. H., Ruffell, A. U., 2003. Smectite in Sandstones: A Review of the Controls on Occurrence and Behaviour during Diagenesis. Sedimentology, 34: 109–128

    Google Scholar 

  • Molenaar, N., 1990. Calcite Cementation in Shallow Marine Eocene Sandstones and Constraints of Early Diagenesis. Journal of the Geological Society, 147(5): 759–768. https://doi.org/10.1144/gsjgs.147.5.0759

    Article  Google Scholar 

  • Morad, S., 1998. Carbonate Cementation in Sandstones: Distribution Patterns and Geochemical Evolution, In: Morad, S., ed., Carbonate Cementation in Sandstones, International Association of Sedimentologists Special Publications, 26: 1–26

    Book  Google Scholar 

  • Morad, S., Al Suwaidi, M., Mansurbeg, H., et al., 2019. Diagenesis of a Limestone Reservoir (Lower Cretaceous), Abu Dhabi, United Arab Emirates: Comparison between the Anticline Crest and Flanks. Sedimentary Geology, 380: 127–142. https://doi.org/10.1016/j.sedgeo.2018.12.004

    Article  Google Scholar 

  • Morad, S., Al-Ramadan, K., Ketzer, J. M., et al., 2010. The Impact of Diagenesis on the Heterogeneity of Sandstone Reservoirs: A Review of the Role of Depositional Facies and Sequence Stratigraphy. AAPG Bulletin, 94(8): 1267–1309. https://doi.org/10.1306/04211009178

    Article  Google Scholar 

  • Morad, S., Ketzer, J. M., De Ros, L. F., 2000. Spatial and Temporal Distribution of Diagenetic Alterations in Siliciclastic Rocks: Implications for Mass Transfer in Sedimentary Basins. Sedimentology, 47: 95–120. https://doi.org/10.1046/j.1365-3091.2000.00007.x

    Article  Google Scholar 

  • Morad, S., Ketzer, J. M., De Ros, L. F., 2012. Linking Diagenesis to Sequence Stratigraphy: An Integrated Tool for Understanding and Predicting Reservoir Quality Distribution. International Association of Sedimentologists Special Publications, 45: 1–36

    Google Scholar 

  • Nilsen, T. H., Sylvester, A. G., 1999. Strike-Slip Basins: Part 1. The Leading Edge, 18(10): 1146–1152. https://doi.org/10.1190/1.1438170

    Article  Google Scholar 

  • Noble, L. F., 1954. The San Andreas Fault Zone from Soledad Pass to Cajon Pass, California, In: Jahns, R. H., ed., Geology of Southern California, California Division of Mines Bulletin, 170: 37–48

    Google Scholar 

  • Oluwadebi, A. G., Taylor, K. G., Dowey, P. J., 2018. Diagenetic Controls on the Reservoir Quality of the Tight Gas Collyhurst Sandstone Formation, Lower Permian, East Irish Sea Basin, United Kingdom. Sedimentary Geology, 371: 55–74. https://doi.org/10.1016/j.sedgeo.2018.04.006

    Article  Google Scholar 

  • Parrish, J. G., 2006. Simplified Geologic Map of California, California Geological Survey, Map Sheet 57. https://www.earthsciweek.org/sites/default/files/gmd/simplifiedgeologicmapofcalifornia.pdf

  • Peters, K. E., Magoon, L. B., Lampe, C., et al., 2007. A Four-Dimensional Petroleum Systems Model for the San Joaquin Basin Province, California. In: Scheirer, A. H., ed., Petroleum Systems and Geological Assessment of Oil and Gas in the San Joaquin Basin Province, Califofrnia; Energy Resources Program, U.S. Geological Survey Professional Paper, 1713: 35

    Google Scholar 

  • Primmer, T. J., Cade C. A., Evans, J., et al., 1997. Global Patterns in Sandstone Diagenesis: Their Application to Reservoir Quality Prediction for Petroleum Exploration, In: Kupecz, J. A., Gluyas, J., Block, B., eds., Reservoir Quality Prediction in Sandstones and Carbonates, AAPG Memoir, 69: 61–67

    Google Scholar 

  • Pusch, R., Karnland, O., 1996. Physico/Chemical Stability of Smectite Clays. Engineering Geology, 41(1/2/3/4): 73–85. https://doi.org/10.1016/0013-7952(95)00027-5

    Article  Google Scholar 

  • Rahman, M. J. J., Worden, R. H., 2016. Diagenesis and Its Impact on the Reservoir Quality of Miocene Sandstones (Surma Group) from the Bengal Basin, Bangladesh. Marine and Petroleum Geology, 77: 898–915. https://doi.org/10.1016/j.marpetgeo.2016.07.027

    Article  Google Scholar 

  • Ramseyer, K., Boles, J. R., 1986. Mixed-Layer Illite/Smectite Minerals in Tertiary Sandstones and Shales, San Joaquin Basin, California. Clays and Clay Minerals, 34(2): 115–124. https://doi.org/10.1346/ccmn.1986.0340202

    Article  Google Scholar 

  • Ramseyer, K., Boles, J. R., Lichtner, P. C., 1992. Mechanism of Plagioclase Albitization, Journal of Sedimentary Petrology, 62: 349–356. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.890.9372&rep=rep1&type=pdf

    Google Scholar 

  • Saïag, J., Brigaud, B., Portier, É., et al., 2016. Sedimentological Control on the Diagenesis and Reservoir Quality of Tidal Sandstones of the Upper Cape Hay Formation (Permian, Bonaparte Basin, Australia). Marine and Petroleum Geology, 77: 597–624. https://doi.org/10.1016/j.marpetgeo.2016.07.002

    Article  Google Scholar 

  • Sass, J. H., Lachenbruch, A. H., Galanis, S. P. Jr, et al., 1994. Thermal Regime of the Southern Basin and Range Province & Colon; 1. Heat Flow Data from Arizona and the Mojave Desert of California and Nevada. Journal of Geophysical Research: Solid Earth, 99(B11): 22093–22119. https://doi.org/10.1029/94jb01891

    Article  Google Scholar 

  • Scheirer, A. H., Magoon, L., 2007. Age, Distribution, and Stratigraphic Relationship of Rock Units in the San Joaquin Basin Province, California. In: Scheirer A. H., ed., Petroleum Systems and Geological Assessment of Oil and Gas in the San Joaquin Basin Province, Califofrnia, Energy Resources Program, U. S. Geological Survey Professional Paper, 1713: 1–107

    Google Scholar 

  • Schmid, S., Worden, R. H., Fisher, Q. J., 2004. Diagenesis and Reservoir Quality of the Sherwood Sandstone (Triassic), Corrib Field, Slyne Basin, West of Ireland. Marine and Petroleum Geology, 21(3): 299–315. https://doi.org/10.1016/j.marpetgeo.2003.11.015

    Article  Google Scholar 

  • Schmidt, V., McDonald, D. A., 1984. Secondary Porosity in the Course of Sandstone Diagenesis, The American Association of Petroleum Geologists Continuing Education Course Note Series, 125

  • Schmitt, A. K., Hulen, J. B., 2008. Buried Rhyolites within the Active, High-Temperature Salton Sea Geothermal System. Journal of Volcanology and Geothermal Research, 178(4): 708–718. https://doi.org/10.1016/j.jvolgeores.2008.09.001

    Article  Google Scholar 

  • Schultz, J. L., Boles, J. R., Tilton, G. R., 1989. Tracking Calcium in the San Joaquin Basin, California: A Strontium Isotopic Study of Carbonate Cements at North Coles Levee. Geochimica et Cosmochimica Acta, 53(8): 1991–1999. https://doi.org/10.1016/0016-7037(89)90319-0

    Article  Google Scholar 

  • Sheldon, H. A., Wheeler, J., Worden, R. H., et al., 2003. An Analysis of the Roles of Stress, Temperature, and pH in Chemical Compaction of Sandstones. Journal of Sedimentary Research, 73: 64–71

    Article  Google Scholar 

  • Smiley, T. M., Hyland, E. G., Cotton, J. M., et al., 2018. Evidence of Early C4 Grasses, Habitat Heterogeneity, and Faunal Response during the Miocene Climatic Optimum in the Mojave Region. Palaeogeography, Palaeoclimatology, Palaeoecology, 490: 415–430. https://doi.org/10.1016/j.palaeo.2017.11.020

    Article  Google Scholar 

  • Smosna, R., Bruner, K., 1997. Depositional Controls over Porosity Development in Lithic Sandstones of the Appalachian Basin: Reducing Exploration Risk. AAPG Memoir, 69: 249–265

    Google Scholar 

  • Środoń, J., 1999. Nature of Mixed-Layer Clays and Mechanisms of Their Formation and Alteration. Annual Review of Earth and Planetary Sciences, 27(1): 19–53. https://doi.org/10.1146/annurev.earth.27.1.19

    Article  Google Scholar 

  • Stang, D. M., 2013. Provenance, Offset Equivalent and Palinspastic Reconstruction of the Miocene Cajon Valley Formation, Southern California: [Dissertation]. University of California, Los Angeles

    Google Scholar 

  • Svensen, H., Karlsen, D. A., Sturz, A., et al., 2007. Processes Controlling Water and Hydrocarbon Composition in Seeps from the Salton Sea Geothermal System, California, USA. Geology, 35(1): 85–88. https://doi.org/10.1130/g23101a.1

    Article  Google Scholar 

  • Taylor, K. G., Soule, C. H., 1993. Reservoir Characterization and Diagenesis of the Oligocene 64-Zone Sandstone, North Belridge Field, Kern County, California, AAPG Bulletin, 77(9): 1519–1566. https://doi.org/10.1306/bdff8ef2-1718-11d7-8645000102c1865d

    Google Scholar 

  • Thompson, B. J., Garrison, R. E., Moore, J. C., 2007. A Reservoir-Scale Miocene Injectite near Santa Cruz, California. AAPG Memoir, 87: 151–162

    Google Scholar 

  • Tian, Y., Liu, L., 2013. Geophysical Properties and Seismotectonics of the Tohoku Forearc Region. Journal of Asian Earth Sciences, 64: 235–244. https://doi.org/10.1016/j.jseaes.2012.12.023

    Article  Google Scholar 

  • Tian, Y., Zhao, D. P., Teng, J. W., 2007. Deep Structure of Southern California. Physics of the Earth and Planetary Interiors, 165(1/2): 93–113. https://doi.org/10.1016/j.pepi.2007.08.003

    Article  Google Scholar 

  • Velde, B., Suzuki, T., Nicot, E., 1986. Pressure-Temperature-Composition of Illite/Smectite Mixed-Layer Minerals: Niger Delta Mudstones and Other Examples. Clays and Clay Minerals, 34(4): 435–441. https://doi.org/10.1346/ccmn.1986.0340410

    Article  Google Scholar 

  • Wang, G., Chang, X., Yin, W., et al., 2017. Impact of Diagenesis on Reservoir Quality and Heterogeneity of the Upper Triassic Chang 8 Tight Oil Sandstones in the Zhenjing Area, Ordos Basin, China. Marine and Petroleum Geology, 83: 84–96. https://doi.org/10.1016/j.marpetgeo.2017.03.008

    Article  Google Scholar 

  • Watkins, R., 1992. Sedimentology and Paleoecology of Pliocene Shallow Marine Conglomerates, Salton Trough Region, California. Palaegeography, Palaeoclimatology, Palaeoecology, 95: 319–333

    Article  Google Scholar 

  • Wilkinson, M., Haszeldine, R. S., Fallick, A. E., 2006. Jurassic and Cretaceous Clays of the Northern and Central North Sea Hydrocarbon Reservoirs. Clay Minerals, 41(1): 151–186

    Article  Google Scholar 

  • Worden, R. H., Morad, S., 2003. Clay Minerals in Sandstones: Controls on Formation, Distribution and Evolution, In: Worden, R. H., Morad, S., eds., Clay Minerals in Sandstones, IAS Special Publication, Blackwell Scientific Publication, Oxford

    Google Scholar 

  • Worden, R. H., Burley, S. D., 2003. Sandstone Diagenesis: The Evolution of Sand to Stone, Sandstone Diagenesis, Blackwell Scientific Publication, Oxford

    Google Scholar 

  • Worden, R. H., Matray, J. M., 1998. Carbonate Cement in the Triassic Chaunoy Formation of the Paris Basin: Distribution and Effects on Flow Properties, In: Morad, S., ed., Carbonate Cementation in Sandstones, International Association of Sedimentologists Special Publication, 26: 163–177

    Google Scholar 

  • Worden, R. H., Morad, S., 2000. Quartz Cementation in Oil Field Sandstones: A Review of the Key Controversies. In: Worden, R. H., Morad, S., eds., Quartz Cementation in Sandstones, International Association of Sedimentologists Special Publications, 29: 1–20

  • Younker, L. W., Kasameyer, P. W., Tewhey, J. D., 1982. Geological, Geophysical, and Thermal Characteristics of the Salton Sea Geothermal Field, California. Journal of Volcanology and Geothermal Research, 12(3/4): 221–258. https://doi.org/10.1016/0377-0273(82)90028-2

    Article  Google Scholar 

  • Zahid, M. A., Dong, C. M., Lin, C. Y., et al., 2016. Sequence Stratigraphy, Sedimentary Facies and Reservoir Quality of Es4s, Southern Slope of Dongying Depression, Bohai Bay Basin, East China. Marine and Petroleum Geology, 77: 448–470. https://doi.org/10.1016/j.marpetgeo.2016.06.026

    Article  Google Scholar 

  • Zeng, L. B., 2010. Microfracturing in the Upper Triassic Sichuan Basin Tight-Gas Sandstones: Tectonic, Overpressure, and Diagenetic Origins. AAPG Bulletin, 94(12): 1811–1825. https://doi.org/10.1306/06301009191

    Article  Google Scholar 

Download references

Acknowledgments

The author Sunday E. Okunuwadje wishes to thank the University of Aberdeen for an Elphinstone PhD Scholarship, and Niger Delta Development Commission (NDDC) for financial assistance which has enabled him to take up this study as part of his PhD programme. Endeeper provided the Petroledge software used for the petrographic studies. Mr. John Still, School of Geosciences, University of Aberdeen provided technical support. The final publication is available at Springer via https://doi.org/10.1007/s12583-020-1289-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunday E. Okunuwadje.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okunuwadje, S.E., MacDonald, D. & Bowden, S. Diagenetic and Reservoir Quality Variation of Miocene Sandstone Reservoir Analogues from Three Basins of Southern California, USA. J. Earth Sci. 31, 930–949 (2020). https://doi.org/10.1007/s12583-020-1289-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-020-1289-7

Key Words

Navigation