Skip to main content
Log in

Contribution of Hydrogeochemical and Isotopic Tools to the Management of Upper and Middle Cheliff Aquifers

  • Hydrogeology and Environmental Geology
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

In the alluvial aquifers of Upper and Middle Cheliff (North-West Algeria), the groundwater quality is deteriorating. The objective of this study was to characterize the physical and chemical properties of these aquifers; and to evaluate the groundwater quality and its appropriateness for drinking and agricultural use. An investigation was carried out by estimating of the physiochemical parameters (Ca2+, Mg2+, Na+, K+, Cl, SO 2−4 , HCO 3 , NO 3 , Br and TDS) to identify the chemical characteristics of groundwater. Morever, the isotopic composition was examined to identify the sources of recharge of these aquifers. The groundwater geochemistry for the high water level (May, 2012 and June, 2017) and low water level (November, 2012 and October, 2017) was studied. Accordingly, water samples from 39 water sampling points were collected (October, 2017 and June, 2018), for the purpose of analyzing stable isotopes (18O, 2H). The results show that the groundwater is mainly characterized by Ca-Cl and Na-Cl type. The chemical quality of the water is from fair to poor with the presence of nitrates used in agricultural and urban discharge. Also, the Br/Cl ratio gives indications on the origin of the salinity. This salinity is due to the leaching of chlorinated fertilizers, the dissolution of evaporite deposits and the rise of deep salty water by the fault of Chellif. While, the diagram of δ2h=f18O) indicates that the origin of the recharge of these aquifers is the Atlantic and Mediterranean oceanic meteoric rainwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Achour, F., Bouzelboudjen, M., 1998. Spatial-Temporal Variability of Water Resources in Semi-Arid Regions: Application to the Cheliff Basin, Algeria. IAHS Publ., 252: 225–234

    Google Scholar 

  • Andreasen, D. C., Fleck, W. B., 1997. Use of Bromide: Chloride Ratios to Differentiate Potential Sources of Chloride in a Shallow, Unconfined Aquifer Affected by Brackish-Water Intrusion. Hydrogeology Journal, 5(2): 17–26. https://doi.org/10.1007/s100400050104

    Article  Google Scholar 

  • ANRH Blida (National Water Resources Agency, Wilaya of Blida), 2017. Internal Document: Climatic Data 1971–2017; Geological and Geophysical Sections; Hydrogeological Yearbook of the Upper and Middle Cheliff Alluvial Groundwater Table. 14–17

  • Aouidane, L., 2017. Origins of Salinisation of Water and Soil in a Semi-Arid Climate Zone: Case of Remila (W. Khenchela): [Dissertation]. University of Biskra, Biskra. 75–77

    Google Scholar 

  • Appelo, C. A. J., Postma, D., 1993. Geochemistry, Grounwater and Pollution. Balkema Publishers, Rotterdam

    Google Scholar 

  • Bathurst, R. G. C., 1971. Carbonate Sediments and Their Diagenesis. Development in Sedimentoloqy, Elsevier, Amsterdam

    Google Scholar 

  • Beal, L. K., Wong, C. I., Bautista, K. K., et al., 2019. Isotopic and Geochemical Assessment of the Sensitivity of Groundwater Resources of Guam, Mariana Islands, to Intra- And Inter-Annual Variations in Hydroclimate. Journal of Hydrology, 568: 174–183. https://doi.org/10.1016/j.jhydrol.2018.10.049

    Article  Google Scholar 

  • Belkoum, N., Houha, B., 2017. Hydrochemistry and Isotopic Geochemistry Contribution to the Characterization of the Aquifers of the Upper Plains of Algeria, Case of the Basin of Chemora, Oriental Algeria. Journal of Materials and Environmental Sciences, 8: 3262–3268

    Google Scholar 

  • Bemiloud, N., 2017. Sig Modelling of Nitrate Contamination Potential in the Middle Western Cheliff Plain: [Dissertation]. University of Chlef, Chlef. 199

    Google Scholar 

  • Blavoux, B., Létolle, R., 1995. Contributions of Isotopic Techniques to the Knowledge of Mineral Water Deposits. White Coal, 54(2/3): 51–58. https://doi.org/10.1051/lhb/1995013

    Google Scholar 

  • Blum, A., Barbier, J., Chery, I., Petelet-Giraud, E., 2001. Contribution to the Characterization of Geochemical Groundwater Baseline Conditions. Tools and Methodology, 51093: 268

    Google Scholar 

  • Bouchaou, L., Michelot, J. L., Vengosh, A., et al., 2008. Application of Multiple Isotopic and Geochemical Tracers for Investigation of Recharge, Salinization, and Residence Time of Water in the Souss-Massa Aquifer, Southwest of Morocco. Journal of Hydrology, 352(3/4): 267–287. https://doi.org/10.1016/j.jhydrol.2008.01.022

    Article  Google Scholar 

  • Bouzelboudjen, M., 1987. Hydrogéologie et Bilan de la Nappe d’El Amra-El Abadia Par Modèles Mathématiques (Bassin du Moyen Cheliff, Algérie): [Dissertation]. Université de Franche-Comté, Besancon. 197 (in French)

    Google Scholar 

  • Celle, H., 2000. Characterization of Precipitation around the Western Mediterranean-Isotopic and Chemical Approach: [Dissertation]. University of Avignon and Pays de Vaucluse, Avignon. 222 (in French)

    Google Scholar 

  • Chenaker, H., Houha, B., Vincent, V., 2018. Hydrogeochemistry and Geothermometry of Thermal Water from North-Eastern Algeria. Geothermics, 75: 137–145. https://doi.org/10.1016/j.geothermics.2018.04.009

    Article  Google Scholar 

  • Cheng, Z. S., Zhang, Y. B., Su, C., et al., 2017. Chemical and Isotopic Response to Intensive Groundwater Abstraction and Its Implications on Aquifer Sustainability in Shijiazhuang, China. Journal of Earth Science, 28(3): 523–534. https://doi.org/10.1007/s12583-017-0729-5

    Article  Google Scholar 

  • Chkir, N., Zouari, K., 2008. Uranium Isotopic Disequilibrium for Groundwater Classification: First Results on Complexe Terminal and Continental Intercalaire Aquifers in Southern Tunisia. Environmental Geology, 53(3): 677–685

    Article  Google Scholar 

  • Clark, I., Fritz, P., 1997. Environmental Isotopes in Hydrogeology. Lewis Publishers, New York

    Google Scholar 

  • Craig, H., 1961. Isotopic Variations in Meteoric Waters. Science, 133(3465): 1702–1703. https://doi.org/10.1126/science.133.3465.1702

    Article  Google Scholar 

  • DHW, 1971. Hydro Geological Study of Upper and Middle Cheliff. Environmental Studies and Hydraulic Research Department. State Secretariat for Hydraulics, Algeria

    Google Scholar 

  • Djabri, L., 1996. Pollution of the Waters of the Seybouse Valley-Guelma-Bouchegouf-Annaba Regions, Its Geological, Industrial, Agricultural and Urban Origins: [Dissertation]. University of Annaba, Annaba. 247

    Google Scholar 

  • Djada, F., 1987. Hydrogeological Study and Simulation by Mathematical Model of the Khemis Miliana Water Table (Haut Cheliff Basin-Algerian): [Dissertation]. University of Basançon, Basançon. 185 (in French)

    Google Scholar 

  • Edmunds, W. M., 1996. Bromine Geochemistry of British Groundwaters. Mineralogical Magazine, 60(399): 275–284. https://doi.org/10.1180/minmag.1996.060.399.03

    Article  Google Scholar 

  • Farid, I., Zouari, K., Rigane, A., et al., 2015. Origin of the Groundwater Salinity and Geochemical Processes in Detrital and Carbonate Aquifers: Case of Chougafiya Basin (Central Tunisia). Journal of Hydrology, 530: 508–532. https://doi.org/10.1016/j.jhydrol.2015.10.009

    Article  Google Scholar 

  • Fedrigoni, L., Krimissa, M., Zouari, K., et al., 2001. Origin of the Salinisation and Hydrogeochemical Behaviour of a Phreatic Aquifer Suffering Severe Natural and Anthropic Constraints: An Example from the Djebeniana Aquifer (Tunisia). CR. Acad. Sci., 332: 665–672

    Google Scholar 

  • Fidelibus, M. D., Tulipano, L., 1986. Mixing Phenomena Owing to Sea Water Intrusion for the Interpretation of Chemical and Isotopic Data of Discharge Water in the Apulian Coastal Carbonate Aquifer (Southern Italy). Proceedings 9th Salt Water Intrusion Meeting, May 12–16, 1986, Delft

  • Fisher, R. S., Mullican, I. F., 1997. Hydrochemical Evolution of Sodium-Sulfate and Sodium-Chloride Groundwater beneath the Northern Chihuahuan Desert, Trans-Pecos, Texas, USA. Hydrogeology Journal, 5(2): 4–16. https://doi.org/10.1007/s100400050102

    Article  Google Scholar 

  • Ghebouli, M. S., Bencheikh Elhocine, M., 2008. Origine de la Salinité des Eaux Souterraines cas de Hautes Plaines Setifiennes (Nord-Est Algérien). Sciences & Technologie, 28: 37–46

    Google Scholar 

  • Girard, P., Hillaire-Marcel, C., 1997. Determining the Source of Nitrate Pollution in the Niger Discontinuous Aquifers Using the Natural Ratios. Journal of Hydrology, 199(3/4): 239–251. https://doi.org/10.1016/s0022-1694(96)03318-5

    Article  Google Scholar 

  • Glangeaud, L., 1955. The Plio-Quaternary Deformations of North Africa. Geologische Rundschau, 43(1): 181–196. https://doi.org/10.1007/bf01764100

    Article  Google Scholar 

  • Gleick, P. H., 1996. Basic Water Requirements for Human Activities: Meeting Basic Needs. Water International, 21(2): 83–92. https://doi.org/10.1080/02508069608686494

    Article  Google Scholar 

  • Gonfiantini, R., 1996. On the Isotopic Composition of Precipitation. In: Proceedings, International Symposium on Isotope Hydrology, BRGM-ORSTOM, Paris

    Google Scholar 

  • Gupta, S., Mahato, A., Roy, P., et al., 2008. Geochemistry of Groundwater, Burdwan District, West Bengal, India. Environmental Geology, 53(6): 1271–1282. https://doi.org/10.1007/s00254-007-0725-7

    Article  Google Scholar 

  • Han, D. M., Song, X. F., Currell, M. J., et al., 2014. Chemical and Isotopic Constraints on Evolution of Groundwater Salinization in the Coastal Plain Aquifer of Laizhou Bay, China. Journal of Hydrology, 508: 12–27. https://doi.org/10.1016/j.jhydrol.2013.10.040

    Article  Google Scholar 

  • Hsissou, Y., Mudry, J., Mania, J., et al., 1999. Use of the Br/Cl Ratio to Determine the Origin of Groundwater Salinity: Example of the Souss Plain (Morocco). Proceedings of the Academy of Sciences-Series IIA-Earth and Planetary Science, 328(6): 381–386. https://doi.org/10.1016/s1251-8050(99)80103-7

    Google Scholar 

  • IFES, 2002. Design Office, Miliana, Geophysical Study Report by Electric Prospecting of the Middle Chélif, El Attaf

  • Kamel, S., Dassi, L., Zouari, K., et al., 2006. Hydrogeological and Hydrochemical Approach to Hydrodynamic Exchanges between Deep and Superficial Aquifers of the Djerid Basin, Tunisia. Hydrological Sciences Journal, 51(4): 713–730. https://doi.org/10.1623/hysj.51.4.713

    Article  Google Scholar 

  • Kirèche, O., 1977. Geological and Structural Study of the Cheliff Schistosity Massifs (Doui, Rouina, Temoulga): [Dissertation]. Université de Sciences et de la Technologie Houari Boumediene, Alger

    Google Scholar 

  • Kirèche, O., 1993. Geodynamic Evolution of the Maghrebian Tellian Margin According to the Study of the Para-Native domain Shistose; Chp: Massif du Chéliff Oranaie: [Dissertation]. Université de Sciences et de la Technologie Houari Boumediene, Alger. 39–54

    Google Scholar 

  • Lepvrier, C., 1971. Data Related to Schistosity and Metamorphism in the Cheliff and Bou Maad Massifs (Native North and Mesotellian). C. R. Acad. Sci., 284–286

  • Lepvrier, C., 1978. The Synschist Lying Folds of the Cheliff Massifs (Algerian Tell, Algerian). Rev. Geol. Dyn. Geogr. Phys., 20(1): 119–136

    Google Scholar 

  • Li, S. L., Liu, C. Q., Li, J., et al., 2013. Evaluation of Nitrate Source in Surface Water of Southwestern China Based on Stable Isotopes. Environmental Earth Sciences, 68(1): 219–228. https://doi.org/10.1007/s12665-012-1733-9

    Article  Google Scholar 

  • Liu, C. Q., Li, S. L., Lang, Y. C., et al., 2006. Using Δ15N- and Δ18O-Values to Identify Nitrate Sources in Karst Ground Water, Guiyang, Southwest China. Environmental Science & Technology, 40(22): 6928–6933. https://doi.org/10.1021/es0610129

    Article  Google Scholar 

  • Ma, F. S., Wei, A. H., Deng, Q. H., et al., 2014. Hydrochemical Characteristics and the Suitability of Groundwater in the Coastal Region of Tangshan, China. Journal of Earth Science, 25(6): 1067–1075. https://doi.org/10.1007/s12583-014-0492-9

    Article  Google Scholar 

  • Marjoua, A., 1995. Geochemical Approach and Hydrodynamic Modelling of the Coastal Chaouia Aquifer (Morocco): Origin of Water Salinisation: [Dissertation]. University of Paris, Paris. 102 (in French)

    Google Scholar 

  • Mattauer, M., 1958. Geological Study of the Eastern Ouarsenis (Algeria): [Dissertation]. University of Paris, Paris. 343 (in French)

    Google Scholar 

  • Mebrouk, M., Stambol, M., Issaadi, A., 2003. Contributions of Stable and Radioactive Isotopes to the Study of the Feeding Modality of the Aquifers of Ain Oussara (Algeria) under Semi-Arid Climate. Algeria Newspaper of the Arid Region, 2: 84–92

    Google Scholar 

  • Meghraoui, M., 1982. Neotectonic Study of the North-Western Region of El Asnam. Relation with the Earthquake of October 10, 1980: [Dissertation]. University of Paris, Paris. 182 (in French)

    Google Scholar 

  • Meghraoui, M., Cisternas, A., Philip, H., 1986. Seismotectonics of the Lower Cheliff Basin: Structural Background of the El Asnam (Algeria) Earthquake. Tectonics, 5(6): 809–836. https://doi.org/10.1029/tc005i006p00809

    Article  Google Scholar 

  • Mehr, S. S., Moghaddam, A. A., Field, M. S., 2017. Hydrogeological and Geochemical Evidence for the Origin of Brackish Groundwater in the Shabestar Plain Aquifer, Northwest Iran. Sustainable Water Resources Management, 5(4): 1381–1404. https://doi.org/10.1007/s40899-017-0192-6

    Article  Google Scholar 

  • Meybeck, M., 1984. Influences of Atmospheric Precipitation on the Chemical Composition of Surface Waters: [Dissertation]. University P-M. Curie, Paris. 1–30

    Google Scholar 

  • Mohamed, A. S., 2012. Geochemical and Hydrodynamic Approaches of Trarza Groundwater Recharge, South-Western Mauritania: [Dissertation]. The Eleventh University in Paris, Paris

    Google Scholar 

  • Mustapha, E. M., Younes, F., Abdenbi, E. M., et al., 2012. Salinisation of Groundwater around the Sad Al Majnoun and Zima Sebkhas (Bahira plain), Morocco. Drought, 23(1): 48–56

    Google Scholar 

  • Njitchoua, R., Dever, L., Fontes, J. C., et al., 1997. Geochemistry, Origin and Recharge Mechanisms of Groundwaters from the Garoua Sandstone Aquifer, Northen Cameroon. Journal of Hydrology, 190(1/2): 123–140. https://doi.org/10.1016/s0022-1694(96)03049-1

    Article  Google Scholar 

  • Obert, D., Lepvrier, C., 1976. Paleotectonics in North Africa: The Example of the Babors and the Bou Maad Ensemble, Cheliff Massifs (Algeria). 4th RAST, 308

  • Ogrinc, N., Tamše, S., Zavadlav, S., et al., 2019. Evaluation of Geochemical Processes and Nitrate Pollution Sources at the Ljubljansko Polje Aquifer (Slovenia): A Stable Isotope Perspective. Science of the Total Environment, 646: 1588–1600

    Article  Google Scholar 

  • Perrodon, A., 1957. Geological Study of the Sublittoral Neogenous Basins of North-Western Algeria: [Dissertation]. University of Paris, Paris. 343 (in French)

    Google Scholar 

  • Piper, A. M., 1944. Graphical Procedure in Geochemical Interpretation of Water Analysis. Transactions American Geophysical Union, 25: 914–928. https://doi.org/10.1029/TR025i006p00914

    Article  Google Scholar 

  • Rittenhouse, G., 1967. Bromine in Oil-Field Waters and Its Use in Determining Possibilities of Origin of these Waters. AAPG Bulletin, 51: 2430–2440

    Google Scholar 

  • Simler, R., 2009. Diagrammes Software. http://www.lha.univavignon.fr/LHA-Logiciels.htm

  • Stadler, S., Osenbrück, K., Knöller, K., et al., 2008. Understanding the Origin and Fate of Nitrate in Groundwater of Semi-Arid Environments. Journal of Arid Environments, 72(10): 1830–1842. https://doi.org/10.1016/j.jaridenv.2008.06.003

    Article  Google Scholar 

  • Stoecker, F., Babel, M. S., Gupta, A. D., et al., 2013. Hydrogeochemical and Isotopic Characterization of Groundwater Salinization in the Bangkok Aquifer System, Thailand. Environmental Earth Sciences, 68(3): 749–763. https://doi.org/10.1007/s12665-012-1776-y

    Article  Google Scholar 

  • Takrouni, M., 2003. Natural Tracing of the Relations between Deep Aquifers, Surface Water Tables and Marine Intrusion in the Sfax Basin (Tunisia): [Dissertation]. University of Paris-Sud, Orsay (in French)

    Google Scholar 

  • Touhari, F., 2015. Upper Cheliff Valley Water Quality Study: [Dissertation]. École Nationale Supérieure D’hydraulique, Blida. 139

    Google Scholar 

  • Trabelsi, R., Zairi, M., Dhia, H. B., 2007. Groundwater Salinization of the Sfax Superficial Aquifer, Tunisia. Hydrogeology Journal, 15(7): 1341–1355. https://doi.org/10.1007/s10040-007-0182-0

    Article  Google Scholar 

  • UNESCO, 1978. World Water Balance and Water Resources of the Earth. Studies and Reports in Hydrology, 25: 663

    Google Scholar 

  • Wali, S. U., Umar, K. J., Abubakar, S. D., et al., 2019. Hydrochemical Characterization of Shallow and Deep Groundwater in Basement Complex Areas of Southern Kebbi State, Sokoto Basin, Nigeria. Applied Water Science, 9(8): 169. https://doi.org/10.1007/s13201-019-1042-5

    Article  Google Scholar 

  • Wright, M. T., McMahon, P. B., Landon, M. K., et al., 2019. Groundwater Quality of a Public Supply Aquifer in Proximity to Oil Development, Fruitvale Oil Field, Bakersfield, California. Applied Geochemistry, 106: 82–95. https://doi.org/10.1016/j.apgeochem.2019.05.003

    Article  Google Scholar 

  • Zhao, W., Ma, J. Z., Gu, C. J., et al., 2016. Distribution of Isotopes and Chemicals in Precipitation in Shule River Basin, Northwestern China: An Implication for Water Cycle and Groundwater Recharge. Journal of Arid Land, 8(6): 973–985. https://doi.org/10.1007/s40333-016-0091-y

    Article  Google Scholar 

  • Zheng, X. H., Duan, C. Y., Xia, B. R., et al., 2019. Hydrogeochemical Modeling of the Shallow Thermal Water Evolution in Yangbajing Geothermal Field, Tibet. Journal of Earth Science, 30(4): 870–878. https://doi.org/10.1007/s12583-016-0918-7

    Article  Google Scholar 

Download references

Acknowledgments

The authors warmly thank the National Agency for Water Resources (ANRH), Nuclear Research Center of Algeria (CRNA) for the multiform support provided for the realization of this study. Our also thank Dr. Meddi Mohamed (Director of DAPGRS-ENSH) for Logistics and Dr. Cherchali Mohamed El-Hocine (Laboratory Manager CRNA) for performing isotope analyzes as well as to anonymous evaluators who have greatly helped to improve the quality of this manuscript. The final publication is available at Springer via https://doi.org/10.1007/s12583-020-1293-y.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meddi Hind.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elaid, M., Hind, M., Abdelmadjid, B. et al. Contribution of Hydrogeochemical and Isotopic Tools to the Management of Upper and Middle Cheliff Aquifers. J. Earth Sci. 31, 993–1006 (2020). https://doi.org/10.1007/s12583-020-1293-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-020-1293-y

Key Words

Navigation