Skip to main content
Log in

Parabolic–Elliptic Chemotaxis Model with Space–Time Dependent Logistic Sources on \(\mathbb {R}^N\). III: Transition Fronts

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

The current work is the third of a series of three papers devoted to the study of asymptotic dynamics in the following parabolic–elliptic chemotaxis system with space and time dependent logistic source,

$$\begin{aligned} {\left\{ \begin{array}{ll} \partial _tu=\Delta u -\chi \nabla \cdot (u\nabla v)+u(a(x,t)-b(x,t)u),&{}\quad x\in {\mathbb R}^N,\\ 0=\Delta v-\lambda v+\mu u ,&{}\quad x\in {\mathbb R}^N, \end{array}\right. } \end{aligned}$$
(0.1)

where \(N\ge 1\) is a positive integer, \(\chi , \lambda \) and \(\mu \) are positive constants, and the functions a(xt) and b(xt) are positive and bounded. In the first of the series (Salako and Shen in Math Models Methods Appl Sci 28(11):2237–2273, 2018), we studied the phenomena of pointwise and uniform persistence for solutions with strictly positive initial data, and the asymptotic spreading for solutions with compactly supported or front like initial data. In the second of the series (Salako and Shen in J Math Anal Appl 464(1):883–910, 2018), we investigate the existence, uniqueness and stability of strictly positive entire solutions of (0.1). In particular, in the case of space homogeneous logistic source (i.e. \(a(x,t)\equiv a(t)\) and \(b(x,t)\equiv b(t)\)), we proved in Salako and Shen (J Math Anal Appl 464(1):883–910, 2018) that the unique spatially homogeneous strictly positive entire solution \((u^*(t),v^*(t))\) of (0.1) is uniformly and exponentially stable with respect to strictly positive perturbations when \(0<2\chi \mu <\inf _{t\in {\mathbb R}}b(t)\). In the current part of the series, we discuss the existence of transition front solutions of (0.1) connecting (0, 0) and \((u^*(t),v^*(t))\) in the case of space homogeneous logistic source. We show that for every \(\chi >0\) with \(\chi \mu \big (1+\frac{\sup _{t\in {\mathbb R}}a(t)}{\inf _{t\in {\mathbb R}}a(t)}\big )<\inf _{t\in {\mathbb R}}b(t)\), there is a positive constant \({c}^{*}_\chi \) such that for every \(\underline{c}> {c}^*_{\chi }\) and every unit vector \(\xi \), (0.1) has a transition front solution of the form \((u(x,t),v(x,t))=(U(x\cdot \xi -C(t),t),V(x\cdot \xi -C(t),t))\) satisfying that \(C'(t)=\frac{a(t)+\kappa ^2}{\kappa }\) for some positive number \(\kappa \), \(\liminf _{t-s\rightarrow \infty }\frac{C(t)-C(s)}{t-s}=\underline{c}\), and

$$\begin{aligned} \lim _{x\rightarrow -\infty }\sup _{t\in {\mathbb R}}|U(x,t)-u^*(t)|=0 \quad \text {and}\quad \lim _{x\rightarrow \infty }\sup _{t\in {\mathbb R}}|\frac{U(x,t)}{e^{-\kappa x}}-1|=0. \end{aligned}$$

Furthermore, we prove that there is no transition front solution \((u(x,t),v(x,t))=(U(x\cdot \xi -C(t),t),V(x\cdot \xi -C(t),t))\) of (0.1) connecting (0, 0) and \((u^*(t),v^*(t))\) with least mean speed less than \(2\sqrt{\underline{a}}\), where \(\underline{a}=\liminf _{t-s\rightarrow \infty }\frac{1}{t-s}\int _{s}^{t}a(\tau )d\tau \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ai, S., Huang, W., Wang, Z.-A.: Reaction, diffusion and chemotaxis in wave propagation. Discrete Contin. Dyn. Syst. Ser. B 20(1), 1–21 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Ai, S., Wang, Z.-A.: Traveling bands for the Keller–Segel model with population growth. Math. Biosci. Eng. 12(4), 717–737 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Aronson, D.G., Weinberger, H.F.: Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. In: Goldstein, J. (ed.) Partail Differential Equations and Related Topics. Lecture Notes in Mathematics, vol. 466, pp. 5–49. Springer, New York (1975)

    Google Scholar 

  4. Aronson, D.G., Weinberger, H.F.: Multidimensional nonlinear diffusions arising in population genetics. Adv. Math. 30, 33–76 (1978)

    MathSciNet  MATH  Google Scholar 

  5. Berestycki, H., Hamel, F., Nadirashvili, N.: The speed of propagation for KPP type problems, I—periodic framework. J. Eur. Math. Soc. 7, 172–213 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Berestycki, H., Hamel, F., Roques, L.: Analysis of periodically fragmented environment model: II—biological invasions and pulsating traveling fronts. J. Math. Pures Appl. 84, 1101–1146 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Berestycki, H., Hamel, F.: Generalized traveling waves for reaction–diffusion equations. Perspectives in nonlinear partial differential equations. Contemp. Math. 446, 101–123 (2007)

    MATH  Google Scholar 

  8. Berestycki, H., Hamel, F.: Generalized transition waves and their properties. Commun. Pure Appl. Math. 65(5), 592–648 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Bramson, M.: Convergence of solutions of the Kolmogorov equations to traveling waves. Mem. Am. Math. Soc. 44, 285 (1983)

    Google Scholar 

  10. Fisher, R.: The wave of advance of advantageous genes. Ann. Eugen. 7, 335–369 (1937)

    MATH  Google Scholar 

  11. Freidlin, M., Gärtner, J.: On the propagation of concentration waves in periodic and random media. Sov. Math. Dokl. 20, 1282–1286 (1979)

    MATH  Google Scholar 

  12. Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall Inc, Englewood Cliffs (1964)

    MATH  Google Scholar 

  13. Funaki, M., Mimura, M., Tsujikawa, T.: Travelling front solutions arising in the chemotaxis-growth model. Interfaces Free Bound. 8, 223–245 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Hamel, F., Henderson, C.: Propagation in a Fisher–KPP equation with non-local advection, preprint (2017) arXiv:1709.00923

  15. Hamel, F.: Qualitative properties of monostable pulsating fronts: exponential decay and monotonicity. J. Math. Pures Appl. (9) 89, 355–399 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Heinze, S., Papanicolaou, G., Stevens, A.: A variational principle for propagation speeds in inhomogeneous media. SIAM J. Appl. Math. 62, 129–148 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981)

    Google Scholar 

  18. Horstmann, D., Stevens, A.: A constructive approach to traveling waves in chemotaxis. J. Nonlinear Sci. 14, 1–25 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Huang, J.H., Shen, W.: Speeds of spread and propagation for KPP models in time almost and space periodic media. SIAM J. Appl. Dyn. Syst. 8, 790–821 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Hudson, W., Zinner, B.: Existence of Traveling Waves for Reaction Diffusion Equations of Fisher Type in Periodic Media, Boundary Value Problems for Functional–Differential Equations, pp. 187–199. World Scientific Publishing, River Edge (1995)

    MATH  Google Scholar 

  21. Kametaka, Y.: On the nonlinear diffusion equation of Kolmogorov–Petrovskii–Piskunov type. Osaka J. Math. 13, 11–66 (1976)

    MathSciNet  MATH  Google Scholar 

  22. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    MathSciNet  MATH  Google Scholar 

  23. Keller, E.F., Segel, L.A.: A model for chemotaxis. J. Theor. Biol. 30, 225–234 (1971)

    MATH  Google Scholar 

  24. Kolmogorov, A., Petrowsky, I., Piscunov, N.: A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem. Bjul. Moskovskogo Gos. Univ. 1, 1–26 (1937)

    Google Scholar 

  25. Li, J., Li, T., Wang, Z.-A.: Stability of traveling waves of the Keller–Segel system with logarithmic sensitivity. Math. Models Methods Appl. Sci. 24(14), 2819–2849 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Liang, X., Yi, Y., Zhao, X.-Q.: Spreading speeds and traveling waves for periodic evolution systems. J. Differ. Equ. 231(1), 57–77 (2006)

    MathSciNet  MATH  Google Scholar 

  27. Liang, X., Zhao, X.-Q.: Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Commun. Pure Appl. Math. 60(1), 1–40 (2007)

    MathSciNet  MATH  Google Scholar 

  28. Liang, X., Zhao, X.-Q.: Spreading speeds and traveling waves for abstract monostable evolution systems. J. Funct. Anal. 259(4), 857–903 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Marchant, B.P., Norbury, J., Sherratt, J.A.: Travelling wave solutions to a haptotaxis-dominated model of malignant invasion. Nonlinearity 14, 1653–1671 (2001)

    MathSciNet  MATH  Google Scholar 

  30. Matano, H.: Traveling waves in spatially random media. RIMS Kokyuroku 1337, 1–9 (2003)

    Google Scholar 

  31. Nadin, G.: Traveling fronts in space–time periodic media. J. Math. Pures Appl. (9) 92, 232–262 (2009)

    MathSciNet  MATH  Google Scholar 

  32. Nadin, G.: Critical travelling waves for general heterogeneous one-dimensional reaction–diffusion equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 32(4), 841–873 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Nadin, G., Rossi, L.: Propagation phenomena for time heterogeneous KPP reaction–diffusion equations. J. Math. Pures Appl. (9) 98(6), 633–653 (2012)

    MathSciNet  MATH  Google Scholar 

  34. Nadin, G., Rossi, L.: Transition waves for Fisher–KPP equations with general time-heterogeneous and space-periodic coefficients. Anal. PDE 8(6), 1351–1377 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Nadin, G., Rossi, L.: Generalized transition fronts for one-dimensional almost periodic Fisher–KPP equations. Arch. Ration. Mech. Anal. 223, 1239–1267 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Nadin, G., Perthame, B., Ryzhik, L.: Traveling waves for the Keller–Segel system with Fisher birth terms. Interfaces Free Bound. 10(4), 517–538 (2008)

    MathSciNet  MATH  Google Scholar 

  37. Nolen, J., Roquejoffre, J.-M., Ryzhik, L., Zlatoš, A.: Existence and non-existence of Fisher–KPP transition fronts. Arch. Ration. Mech. Anal. 203(1), 217–246 (2012)

    MathSciNet  MATH  Google Scholar 

  38. Nolen, J., Rudd, M., Xin, J.: Existence of KPP fronts in spatially–temporally periodic advection and variational principle for propagation speeds. Dyn. PDE 2, 1–24 (2005)

    MathSciNet  MATH  Google Scholar 

  39. Nolen, J., Xin, J.: Existence of KPP type fronts in space–time periodic shear flows and a study of minimal speeds based on variational principle. Discrete Contin. Dyn. Syst. 13(5), 1217–1234 (2005)

    MathSciNet  MATH  Google Scholar 

  40. Salako, R.B., Shen, W.: Global existence and asymptotic behavior of classical solutions to a parabolic–elliptic chemotaxis system with logistic source on \(\mathbb{R}^N\). J. Differ. Equ. 262, 5635–5690 (2017)

    MATH  Google Scholar 

  41. Salako, R.B., Shen, W.: Spreading speeds and traveling waves of a parabolic–elliptic chemotaxis system with logistic source on \(\mathbb{R}^N\). Discrete Contin. Dyn. Syst. Ser. A 37, 6189–6225 (2017)

    MATH  Google Scholar 

  42. Salako, R.B., Shen, W.: Existence of traveling wave solution of parabolic–parabolic chemotaxis systems. Nonlinear Anal. Real World Appl. 42, 93–119 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Salako, R.B., Shen, W.: Long time behavior of random and nonautonomous Fisher–KPP equations. Part I. Stability of equilibria and spreading speeds. J. Dyn. Differ. Equ. (2020). https://doi.org/10.1007/s10884-020-09847-2

    Article  MATH  Google Scholar 

  44. Salako, R.B., Shen, W.: Long time behavior of random and nonautonomous Fisher–KPP equations. Part II. Transition fronts. Stoch. Dyn. 19, 1950046 (2019)

    MathSciNet  MATH  Google Scholar 

  45. Salako, R.B., Shen, W.: Parabolic–elliptic chemotaxis model with space–time dependent logistic sources on \(\mathbb{R}^N\). I. Persistence and asymptotic spreading. Math. Models Methods Appl. Sci. 28(11), 2237–2273 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Salako, R.B., Shen, W.: Parabolic–elliptic chemotaxis model with space–time dependent logistic sources on \(\mathbb{R}^N\). II. Existence, uniqueness and stability of positive entire solutions. J. Math. Anal. Appl. 464(1), 883–910 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Sattinger, D.H.: On the stability of waves of nonlinear parabolic systems. Adv. Math. 22, 312–355 (1976)

    MathSciNet  MATH  Google Scholar 

  48. Shen, W.: Traveling waves in diffusive random media. J. Dyn. Differ. Equ. 16, 1011–1060 (2004)

    MathSciNet  MATH  Google Scholar 

  49. Shen, W.: Variational principle for spatial spreading speeds and generalized wave solutions in time almost and space periodic KPP models. Trans. Am. Math. Soc. 362(10), 5125–5168 (2010)

    MATH  Google Scholar 

  50. Shen, W.: Existence, uniqueness, and stability of generalized traveling solutions in time dependent monostable equations. J. Dyn. Differ. Equ. 23(1), 1–44 (2011)

    MATH  Google Scholar 

  51. Shen, W.: Existence of generalized traveling waves in time recurrent and space periodic monostable equations. J. Appl. Anal. Comput. 1(1), 69–93 (2011)

    MathSciNet  MATH  Google Scholar 

  52. Tao, T., Zhu, B., Zlatoš, A.: Transition fronts for inhomogeneous monostable reaction–diffusion equations via linearization at zero. Nonlinearity 27(9), 2409–2416 (2014)

    MathSciNet  MATH  Google Scholar 

  53. Uchiyama, K.: The behavior of solutions of some nonlinear diffusion equations for large time. J. Math. Kyoto Univ. 18–3, 453–508 (1978)

    MathSciNet  MATH  Google Scholar 

  54. Weinberger, H.F.: Long-time behavior of a class of biology models. SIAM J. Math. Anal. 13, 353–396 (1982)

    MathSciNet  MATH  Google Scholar 

  55. Weinberger, H.F.: On spreading speeds and traveling waves for growth and migration models in a periodic habitat. J. Math. Biol. 45, 511–548 (2002)

    MathSciNet  MATH  Google Scholar 

  56. Wang, Z.-A.: Mathematics of traveling waves in chemotaxis—review paper. Discrete Contin. Dyn. Syst. Ser. B 18(3), 601–641 (2013)

    MathSciNet  MATH  Google Scholar 

  57. Xin, J.: Front propagation in heterogeneous media. SIAM Rev. 42, 161–230 (2000)

    MathSciNet  MATH  Google Scholar 

  58. Zlatoš, A.: Transition fronts in inhomogeneous Fisher–KPP reaction–diffusion equations. J. Math. Pures Appl. (9) 98(1), 89–102 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for valuable comments and suggestions which improved the presentation of the previous version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxian Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Wenxian Shen: Partially supported by the NSF Grant DMS-1645673.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salako, R.B., Shen, W. Parabolic–Elliptic Chemotaxis Model with Space–Time Dependent Logistic Sources on \(\mathbb {R}^N\). III: Transition Fronts. J Dyn Diff Equat 34, 209–238 (2022). https://doi.org/10.1007/s10884-020-09901-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-020-09901-z

Keywords

Mathematics Subject Classification

Navigation