Skip to main content
Log in

Explicit Formulae for Geodesics in Left–Invariant Sub–Finsler Problems on Heisenberg Groups via Convex Trigonometry

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

In the present paper, we obtain explicit formulae for geodesics in some left–invariant sub–Finsler problems on Heisenberg groups \(\mathbb {H}_{2n+1}\). Our main assumption is the following: the compact convex set of unit velocities at identity admits a generalization of spherical coordinates. This includes convex hulls and sums of coordinate 2–dimensional sets, all left–invariant sub–Riemannian structures on \(\mathbb {H}_{2n+1}\), and unit balls in Lp–metric for \(1\le p\le \infty \). In the last case, extremals are obtained in terms of incomplete Euler integral of the first kind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Obviously, for any 𝜃, there exists an angle 𝜃 such that \(\theta ^{\circ }\leftrightarrow {{\varOmega }^{\circ }}\theta \). This can be easily proved by the hyperplane separation theorem.

  2. The angle 𝜃 is defined up to \(2\mathbb {S}\mathbb {Z}\) as always.

  3. I.e., a solution to PMP projection on the base \(\mathbb {H}_{2n+1}\).

  4. Since λi(t) and 𝜃i(t) have a lot of freedom, nothing more can be said about x, y, and z in the general case γ = 0 (this situation is completely similar to the case n = 1, see [5, 16]).

  5. Obviously, hi, gi, and γ are linear on fibers left–invariant coordinates on \(T^{*}\mathbb {H}_{2n+1}\).

References

  1. Agrachev A, Barilari D, Boscain U. 2019. A comprehensive introduction to sub-Riemannian geometry. Cambridge studies in advanced mathematics Cambridge University Press.

  2. Agrachev A, Sachkov Y. 2004. Control theory from the geometric viewpoint encyclopaedia of mathematical sciences.

  3. Ardentov A, Lokutsievskiy L, Sachkov Y. 2020. Explicit solutions for a series of classical optimization problems with 2-dimensional control via convex trigonometry, arXiv:2004.10194v1.

  4. Balogh ZM, Calogero A. 2019. Infinite geodesics of sub-Finsler distances in Heisenberg groups. International mathematics research notices.

  5. Berestovskii V. Geodesics of nonholonomic left-invariant intrinsic metrics on the Heisenberg group and isoperimetric curves on the Minkowski plane. Sib Math J 1994;35(1):1–8. https://doi.org/10.1007/BF02104943.

    Article  Google Scholar 

  6. Berestovskii V N. Homogeneous manifolds with intrinsic metric. i. Sib Math J 1988;29(6):887–897. https://doi.org/10.1007/BF00972413.

    Article  MathSciNet  Google Scholar 

  7. Biggs R, Nagy PT. A classification of sub-Riemannian structures on the Heisenberg groups. ACTA POLYTECH HUNG 2013;10(7):41–52. https://doi.org/10.12700/APH.10.07.2013.7.4.

    Article  Google Scholar 

  8. Brockett R, Dai L. 1993. Nonholonomic motion planning, chap. Non-holonomic kinematics and the role of elliptic functions in constructive controllability, pp 1–21.

  9. Busemann H. The isoperimetric problem in the Minkowski plane. Am J Math 1947;69(4):863–871. https://doi.org/10.2307/2371807.

    Article  MathSciNet  MATH  Google Scholar 

  10. Filippov A. 1988. Differential equations with discontinuous righthand sides. Kluwer.

  11. Freeman D, Le Donne E. 2018. Toward a quasi-möbius characterization of invertible homogeneous metric spaces.

  12. Gaveau B. Principe de moindre action, propagation de la chaleur et estimees sous elliptiques sur certains groupes nilpotents. Acta Math 1977;139:95–153. https://doi.org/10.1007/BF02392235.

    Article  MathSciNet  MATH  Google Scholar 

  13. Gromov M. Groups of polynomial growth and expanding maps (with an appendix by jacques tits). Publications Mathématiques de l’IHÉS 1981;53:53–78.

    Article  Google Scholar 

  14. Huybrechts D. 2005. Complex geometry, an introduction universitext.

  15. Le Donne E. 2013. A metric characterization of carnot groups. pp 845–849.

  16. Lokutsievskiy L. Convex trigonometry with applications to sub-Finsler geometry. SB MATH 2019;210(8):120–148. https://doi.org/10.1070/SM9134.

    Article  MathSciNet  MATH  Google Scholar 

  17. Magaril-Il’yaev G, Tikhomirov V. 2003. Convex analysis: theory and applications. amer mathematical society.

  18. Rockafellar R. Convex analysis. Princeton: Princeton University Press; 1997.

    MATH  Google Scholar 

  19. Shelupsky D. A generalization of the trigonometric functions. Am Math Mon 1959;66(10):879–884. https://doi.org/10.1080/00029890.1959.11989425.

    Article  MathSciNet  MATH  Google Scholar 

  20. Vershik A, Gershkovich V. Nonholonomic dynamical systems. geometry of distributions and variational problems. Dynamical systems — 7. Itogi Nauki i Tekhniki. Ser Sovrem Probl Mat Fund Napr 1987;16:5–85.

    MATH  Google Scholar 

  21. Wei D, Liu Y, Elgindi MB. Some generalized trigonometric sine functions and their applications. Appl Math Sci 2012;6(122):6053–6068.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to express his deep gratitude to Professor A.I. Nazarov for interesting discussions and pointing on a connection to Shelupsky’s functions.

Funding

This work is supported by the Russian Science Foundation under grant 20-11-20169.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Lokutsievskiy.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lokutsievskiy, L.V. Explicit Formulae for Geodesics in Left–Invariant Sub–Finsler Problems on Heisenberg Groups via Convex Trigonometry. J Dyn Control Syst 27, 661–681 (2021). https://doi.org/10.1007/s10883-020-09516-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-020-09516-z

Keywords

Mathematics Subject Classification (2010)

Navigation