Skip to main content
Log in

Square structured photonic crystal fiber based THz sensor design for human body protein detection

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this manuscript, a squared hollow-core photonic crystal fiber-sensor is introduced, which can be used for efficient amino acid investigations using THz waves. Amino acid identification is crucial in medical science, particularly in the drug discovery. The performance analysis has been conducted using the finite element method (FEM) based the COMSOL MULTIPHYSICS software package, and important waveguide properties have been assessed elaborately for five essential amino acids in a wide range of THz frequencies at different core dimensions. The analysis shows that the proposed model exhibits an extraordinarily high sensitivity of 99.98% and remarkably low confinement loss of 4.72 × 10–22 cm−1 for tryptophan, the rarest of the essential amino acids found in proteins. The excellent sensing capabilities are achieved by introducing two hollow square air cavities surrounded by four rectangular air channels in the cladding. The fabrication of the sensor is achievable using the extrusion technique with 3D printing, which is also discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Humphreys, K., et al.: Medical applications of terahertz imaging: a review of current technology and potential applications in biomedical engineering, Conf. Proc. IEEE Eng. Med. Biol. Soc., vol. 2, pp. 1302–1305. (2004). https://doi.org/10.1109/IEMBS.2004.1403410

  2. Ghann, W., Uddin, J. (eds.): Terahertz (THz) Spectroscopy: A Cutting-Edge Technology. IntechOpen, London (2017)

    Google Scholar 

  3. Ting, H., Shen, J.: Applications of terahertz spectroscopy in illicit drugs detection. Guang Pu Xue Yu Guang Pu Fen Xi 33, 2348–2353 (2013). https://doi.org/10.3964/j.issn.1000-0593(2013)09-2348-06

    Article  Google Scholar 

  4. Elayan, H., Amin, O., Shubair, R.M., Alouini, M.: Terahertz communication: The opportunities of wireless technology beyond 5G. In: 2018 International Conference on Advanced Communication Technologies and Networking (CommNet), pp. 1–5. (2018). https://doi.org/10.1109/COMMNET.2018.8360286

  5. Kemp, M., Taday, P., Cole, B., Cluff, J.A., Fitzgerald, A., Tribe, W.: Security applications of terahertz technology. Proc. SPIE-Int. Soc. Opt. Eng. DOI 10(1117/12), 500491 (2003)

    Google Scholar 

  6. Pickwell-MacPherson, E., Wallace, V.: Biomedical applications of terahertz technology. J. Phys. D Appl. Phys. 39, R301 (2006). https://doi.org/10.1088/0022-3727/39/17/R01

    Article  Google Scholar 

  7. Huang, P.J., Ma, Y.H., Li, X., Hou, D.B., Cai, J.H., Zhang, G.X.: Classification and identification of amino acids based on THz spectroscopy. Proc SPIE (2015). https://doi.org/10.1117/12.2214279

    Article  Google Scholar 

  8. Wei, L., Yu, L., Jiaoqi, H., Guorong, H., Yang, Z., Weiling, F.: Application of terahertz spectroscopy in biomolecule detection. Front. Lab. Med. (2019). https://doi.org/10.1016/j.flm.2019.05.001

    Article  Google Scholar 

  9. Hasan, M.M et al.: Heptagonal photonic crystal fiber based chemical sensor in THz regime. Joint 8th International Conference on Informatics, Electronics & Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), Spokane, WA, USA, 30 May–2 June 2019 (2019). https://doi.org/10.1109/ICIEV.2019.8858555

  10. Wagner, M.R., et al.: Two-dimensional phononic crystals: disorder matters. Nano Lett. 16(9), 5661–5668 (2016). https://doi.org/10.1021/acs.nanolett.6b02305

    Article  Google Scholar 

  11. Rana, S. et al.: A highly birefringent slotted-core THz fiber. 9th International Conference on Electrical and Computer Engineering (ICECE), Dhaka, Bangladesh, 20–22 December 2019 (2016). https://doi.org/10.1109/ICECE.2016.7853897

  12. Ahmed, K., et al.: Refractive index-based blood components sensing in terahertz spectrum. IEEE Sens. J. 19(9), 3368–3375 (2019). https://doi.org/10.1109/JSEN.2019.2895166

    Article  Google Scholar 

  13. Olyaee, S., Naraghi, A., Ahmadi, V.: High sensitivity evanescent-field gas sensor based on modified photonic crystal fiber for gas condensate and air pollution monitoring. Optik (Stuttg) 125(1), 596–600 (2014). https://doi.org/10.1016/j.ijleo.2013.07.047

    Article  Google Scholar 

  14. Islam, M., Reza, K.M.S., Islam, M.: Topas based high birefringent and low loss single mode hybrid-core porous fiber for broadband application. Indian J. Pure Appl. Phys. 56(4), 1232 (2018)

    Google Scholar 

  15. Chacko, S., Cherian, J., Sunilkumar, K.: Low confinement loss photonic crystal fiber (PCF) with flat dispersion over c-band. Int. J. Comput. Appl. (2013). https://doi.org/10.5120/14915-3454

    Article  Google Scholar 

  16. Islam, M., et al.: Extremely low-loss, dispersion flattened porous-core photonic crystal fiber for terahertz regime. Opt. Eng. (2016). https://doi.org/10.1117/1.OE.55.7.076117

    Article  Google Scholar 

  17. Islam, M., et al.: A Hi-Bi ultra-sensitive surface plasmon resonance fiber sensor. IEEE Access 7, 79085–79094 (2019). https://doi.org/10.1109/ACCESS.2019.2922663

    Article  Google Scholar 

  18. Islam, M., Kabir, M., Khandoker, T., Arefin, M.: Highly birefringent honeycomb cladding terahertz fiber for polarization-maintaining applications. Opt. Eng. 59, 1 (2020). https://doi.org/10.1117/1.OE.59.1.016113

    Article  Google Scholar 

  19. Yasui, T., Namihira, Y., Hossain, M.A., Higa, H., Hai, N.H.: High numerical aperture square lattice structure photonic crystal fiber for optical coherence tomography. In: 2013 International Conference on Advanced Technologies for Communications (ATC 2013), pp. 237–240, (2013). https://doi.org/10.1109/ATC.2013.6698113

  20. Coscelli, E., et al.: Analysis of the modal content into large-mode-area photonic crystal fibers under heat load. IEEE J. Sel. Top. Quantum Electron. 22, 1 (2015). https://doi.org/10.1109/JSTQE.2015.2479156

    Article  Google Scholar 

  21. Rahman, M.M., Mou, F., Bhuiyan, M., Islam, M.: Design and characterization of a circular sectored core cladding structured photonic crystal fiber with ultra-low EML and flattened dispersion in the THz regime. Opt. Fiber Technol. (2020a). https://doi.org/10.1016/j.yofte.2020.102158

    Article  Google Scholar 

  22. Islam, M., et al.: A modified hexagonal photonic crystal fiber for terahertz applications. Opt. Mater. (Amst) 79, 336–339 (2018a). https://doi.org/10.1016/j.optmat.2018.03.054

    Article  Google Scholar 

  23. Kong, X., Li, X., Jiang, X., Tang, B.: An ultra large negative dispersion regular octagonal PCF with liquid infiltration. Proc SPIE (2015). https://doi.org/10.1117/12.2200942

    Article  Google Scholar 

  24. Revathi, S., Inbathini, S.R., Saifudeen, R.A.: Highly nonlinear and birefringent spiral photonic crystal fiber. Adv. Optoelectron. 2014, 464391 (2014). https://doi.org/10.1155/2014/464391

    Article  Google Scholar 

  25. Wu, J., Li, S., Jing, X., Dou, C., Wang, Y.: Elliptical photonic crystal fiber polarization filter combined with surface plasmon resonance. IEEE Photonics Technol. Lett. 30(15), 1368–1371 (2018). https://doi.org/10.1109/LPT.2018.2845459

    Article  Google Scholar 

  26. Bapna, A., Pandey, S.: Design of a new honeycomb PCF for ultraflatten dispersion over wideband communication system. Int. J. Comput. Appl. 134, 19–22 (2016). https://doi.org/10.5120/ijca2016907936

    Article  Google Scholar 

  27. Hu, D.J.J., Xu, Z., Ertman, S., Wolinski, T., Tong, W.: Two core photonic crystal fiber with hybrid guiding mechanisms. In: 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), pp. 1–3. (2017) . https://doi.org/10.1109/CLEOPR.2017.8118922

  28. Uddin, S., Singh, D.K.: A solid silica core based non-linear hybrid PCF with low confinement loss. Optik (Stuttg) 127(22), 10399–10411 (2016). https://doi.org/10.1016/j.ijleo.2016.08.043

    Article  Google Scholar 

  29. Markos, C., Kubat, I., Bang, O.: Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms. Sci. Rep. 4(1), 6057 (2014). https://doi.org/10.1038/srep06057

    Article  Google Scholar 

  30. Islam, M., et al.: Zeonex based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications. Appl. Opt. 57, 666–672 (2018b). https://doi.org/10.1364/AO.57.000666

    Article  Google Scholar 

  31. Goto, M., Quema, A., Takahashi, H., Ono, S., Sarukura, N.: Teflon photonic crystal fiber as terahertz waveguide. Jpn. J. Appl. Phys. (2004). https://doi.org/10.1143/JJAP.43.L317

    Article  Google Scholar 

  32. Islam, M., Rahman, J., Islam, M.: Topas based low loss and dispersion flatten decagonal porous core photonic crystal fiber for terahertz communication. Int. J. Microw. Opt. Technol. 14, 62 (2019)

    Google Scholar 

  33. Malheiros-Silveira, G.N., Mores, J.A., Chillcce, E.F, Hernández-Figueroa, H.E., Fragnito, H.L.: Tellurite based PCF with flattened dispersion. In: Latin America Optics and Photonics Conference, p. WE30, (2010). https://doi.org/10.1364/LAOP.2010.WE30

  34. Woliński, T., et al.: Photonic liquid crystal fibers with polymers. Acta Phys. Pol. Ser. A 124, 613 (2013). https://doi.org/10.12639/APhysPolA.124.613

    Article  Google Scholar 

  35. Kassani, S.H., Khazaeinezhad, R., Jung, Y., Kobelke, J., Oh, K.: Suspended ring-core photonic crystal fiber gas sensor with high sensitivity and fast response. IEEE Photonics J. 7(1), 1–9 (2015). https://doi.org/10.1109/JPHOT.2015.2396121

    Article  Google Scholar 

  36. Islam, M., Sultana, J., Dinovitser, A., Ahmed, K., Ng, B., Abbott, D.: Sensing of toxic chemicals using polarized photonic crystal fiber in the terahertz region. Opt. Commun. 426, 341–347 (2018). https://doi.org/10.1016/j.optcom.2018.05.030

    Article  Google Scholar 

  37. Islam, M.S., et al.: A novel Zeonex based photonic sensor for alcohol detection in beverages. In 2017 IEEE International Conference on Telecommunications and Photonics (ICTP), pp. 114–118. (2017). https://doi.org/10.1109/ICTP.2017.8285905

  38. Islam, M.S., et al.: Liquid-infiltrated photonic crystal fiber for sensing purpose: design and analysis. Alex. Eng. J. 57(3), 1459–1466 (2018c). https://doi.org/10.1016/j.aej.2017.03.015

    Article  Google Scholar 

  39. Singh, S., Kaur, V.: Photonic crystal fiber sensor based on sensing ring for different blood components: Design and analysis. In: 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 399–403. (2017). https://doi.org/10.1109/ICUFN.2017.7993816

  40. Islam, M.S., et al.: A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime. IEEE Sens. J. 18(2), 575–582 (2018d). https://doi.org/10.1109/JSEN.2017.2775642

    Article  Google Scholar 

  41. Ibadul Islam, M., et al.: Design of single mode spiral photonic crystal fiber for gas sensing applications. Sens. Bio-Sens. Res. 13, 55–62 (2017). https://doi.org/10.1016/J.SBSR.2017.03.001

    Article  Google Scholar 

  42. Islam, M., Sultana, J., Aoni, R.A., Dinovitser, A., Ng, B., Abbott, D.: Terahertz sensing in a hollow core photonic crystal fiber. IEEE Sens. J. 18, 4073–4080 (2018). https://doi.org/10.1109/JSEN.2018.2819165

    Article  Google Scholar 

  43. Arif, M.F.H., Ahmed, K., Asaduzzaman, S., Azad, M.: PHOTONIC SENSORS design and optimization of photonic crystal fiber for liquid sensing applications. Photonic Sens. (2016). https://doi.org/10.1007/s13320-016-0323-y

    Article  Google Scholar 

  44. Asaduzzaman, S., Ahmed, K.: Proposal of a gas sensor with high sensitivity, birefringence and nonlinearity for air pollution monitoring. Sens. Bio-Sens. Res. 10, 20–26 (2016). https://doi.org/10.1016/j.sbsr.2016.06.001

    Article  Google Scholar 

  45. Rahman, M.M., Mou, F., Bhuiyan, M., Islam, M.: Photonic crystal fiber based terahertz sensor for cholesterol detection in human blood and liquid foodstuffs. Sens. Bio-Sens. Res. 29, 100356 (2020b). https://doi.org/10.1016/j.sbsr.2020.100356

    Article  Google Scholar 

  46. Hasan, M.I., Razzak, S.M.A., Hasanuzzaman, G.K.M., Habib, M.S.: Ultra-low material loss and dispersion flattened fiber for THz transmission. IEEE Photonics Technol. Lett. 26(23), 2372–2375 (2014). https://doi.org/10.1109/LPT.2014.2356492

    Article  Google Scholar 

  47. Islam, M., Kabir, M., Khandoker, T., Islam, M.: A novel hollow core terahertz refractometric sensor. Sens. Bio-Sens. Res. 25, 100295 (2019). https://doi.org/10.1016/j.sbsr.2019.100295

    Article  Google Scholar 

  48. Habib, M., Anower, M.S., Hasan, M.R.: Highly birefringent and low effective material loss microstructure fiber for THz wave guidance. Opt. Commun. 423, 140–144 (2018). https://doi.org/10.1016/j.optcom.2018.04.022

    Article  Google Scholar 

  49. Sultana, J., Islam, M.S., Ahmed, K., Dinovitser, A., Ng, B.W.-H., Abbott, D.: Terahertz detection of alcohol using a photonic crystal fiber sensor. Appl. Opt. 57(10), 2426–2433 (2018). https://doi.org/10.1364/AO.57.002426

    Article  Google Scholar 

  50. Sultana, J., Islam, M.S., Atai, J., Islam, M.R., Abbott, D.: Near-zero dispersion flattened, low-loss porous-core waveguide design for terahertz signal transmission. Opt. Eng. 56(7), 1–5 (2017). https://doi.org/10.1117/1.OE.56.7.076114

    Article  Google Scholar 

  51. Sultana, J., Islam, M.S., Islam, M.R., Abbott, D.: High numerical aperture, highly birefringent novel photonic crystal fibre for medical imaging applications. Electron. Lett. 54(2), 61–62 (2018). https://doi.org/10.1049/el.2017.3694

    Article  Google Scholar 

  52. Woyessa, G., Fasano, A., Markos, C., Stefani, A., Rasmussen, H., Bang, O.: Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing. Opt. Mater. Express 7, 286 (2017). https://doi.org/10.1364/OME.7.000286

    Article  Google Scholar 

  53. Hasan, M.R., Islam, M.A., Rifat, A.A.: A single mode porous-core square lattice photonic crystal fiber for THz wave propagation. J. Eur. Opt. Soc. Publ. 12(1), 15 (2016). https://doi.org/10.1186/s41476-016-0017-5

    Article  Google Scholar 

  54. Islam, M.A., Islam, M.R., Tasnim, Z., Islam, R., Khan, R.L., Moazzam, E.: Low-Loss and dispersion-flattened octagonal porous core pcf for terahertz transmission applications. Iran. J. Sci. Technol. Trans. Electr. Eng. (2020). https://doi.org/10.1007/s40998-020-00337-1

    Article  Google Scholar 

  55. Sardar, M., Faisal, M.: Methane gas sensor based on microstructured highly sensitive hybrid porous core photonic crystal fiber. J. Sens. Technol. 09, 12–26 (2019). https://doi.org/10.4236/jst.2019.91002

    Article  Google Scholar 

  56. Yakasai, I., Rahman, A., Abas, P.E., Begum, F.: Theoretical assessment of a porous core photonic crystal fiber for terahertz wave propagation. J. Opt. Commun. (2018). https://doi.org/10.1515/joc-2018-0206

    Article  Google Scholar 

  57. Broeng, J., Mogilevstev, D., Barkou, S.E., Bjarklev, A.: Photonic crystal fibers: a new class of optical waveguides. Opt. Fiber Technol. 5(3), 305–330 (1999). https://doi.org/10.1006/ofte.1998.0279

    Article  Google Scholar 

  58. Johnson, S.G., Villeneuve, P.R., Fan, S., Joannopoulos, J.D.: Linear waveguides in photonic-crystal slabs. Phys. Rev. B 62(12), 8212–8222 (2000). https://doi.org/10.1103/PhysRevB.62.8212

    Article  Google Scholar 

  59. El Hamzaoui, H., et al.: Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter. Opt. Express 20(28), 29751–29760 (2012). https://doi.org/10.1364/OE.20.029751

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Rakibul Islam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.A., Islam, M.R., Al Naser, A.M. et al. Square structured photonic crystal fiber based THz sensor design for human body protein detection. J Comput Electron 20, 377–386 (2021). https://doi.org/10.1007/s10825-020-01606-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01606-2

Keywords

Navigation