Skip to main content

Advertisement

Log in

A copper(II)-binding triazole derivative with ionophore properties is active against Candida spp.

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

A Correction to this article was published on 29 May 2021

This article has been updated

Abstract

Invasive fungal infections (IFIs) are life threatening and existing antifungal drugs are not completely effective due to undesirable side effects and resistance emergence. Azoles are often the treatment of choice for IFIs and growing evidence suggests that copper can act synergistically with these drugs. In this work, we designed a compound bringing together azole and copper(II)-binding groups and studied the molecular mechanisms underlying its biological toxicity. Our results show that both the compound, 4, and its copper(II) complex, Cu.4, are active against Candida spp. We found that Cu.4 acts as a copper(II) ionophore, which results in the intracellular accumulation of reactive oxygen species (ROS), whereas compound 4 is an iron chelator and exerts its toxicity by decreasing iron bioavailability. Interestingly, while 4 is not very toxic to macrophages or HeLa cells, Cu.4 significantly affects their viability. Overall, this work provides evidence of how copper can be combined with azoles to deregulate copper homeostasis, opening new horizons for the development of bifunctional antifungals.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Scheme 2
Fig. 2 Please, decrease the figure size
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Miceli MH, Díaz JA, Lee SA (2011) Emerging opportunistic yeast infections. Lancet Infect Dis 11(2):142–151. https://doi.org/10.1016/s1473-3099(10)70218-8

    Article  PubMed  Google Scholar 

  2. Suleyman G, Alangaden GJ (2016) Nosocomial fungal infections: epidemiology, infection control, and prevention. Infect Dis Clin N Am 30(4):1023–1052. https://doi.org/10.1016/j.idc.2016.07.008

    Article  Google Scholar 

  3. Tabah A, Koulenti D, Laupland K, Misset B, Valles J, de Carvalho FB et al (2012) Characteristics and determinants of outcome of hospital-acquired bloodstream infections in intensive care units: the EUROBACT International Cohort Study. Intensive Care Med 38(12):1930–1945. https://doi.org/10.1007/s00134-012-2695-9

    Article  Google Scholar 

  4. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39(3):309–317. https://doi.org/10.1086/421946

    Article  PubMed  Google Scholar 

  5. Whaley SG, Berkow EL, Rybak JM, Nishimoto AT, Barker KS, Rogers PD (2016) Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Front Microbiol 7:2173. https://doi.org/10.3389/fmicb.2016.02173

    Article  PubMed  Google Scholar 

  6. Fidel PL, Vazquez JA, Sobel JD (1999) Candida glabrata: review of epidemiology, pathogenesis, and clinical disease with comparison to C. albicans. Clin Microbiol Rev 12(1):80–96

    Article  Google Scholar 

  7. Pfaller MA, Andes DR, Diekema DJ, Horn DL, Reboli AC, Rotstein C et al (2014) Epidemiology and outcomes of invasive candidiasis due to non-albicans species of Candida in 2,496 patients: data from the Prospective Antifungal Therapy (PATH) registry 2004–2008. PLoS ONE 9(7):e101510. https://doi.org/10.1371/journal.pone.0101510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Campoy S, Adrio JL (2017) Antifungals. Biochem Pharmacol 133:86–96. https://doi.org/10.1016/j.bcp.2016.11.019

    Article  CAS  PubMed  Google Scholar 

  9. Georgopapadakou NH, Walsh TJ (1996) Antifungal agents: chemotherapeutic targets and immunologic strategies. Antimicrob Agents Chemother 40(2):279–291

    Article  CAS  Google Scholar 

  10. Allen D, Wilson D, Drew R, Perfect J (2015) Azole antifungals: 35 years of invasive fungal infection management. Expert Rev Anti Infect Ther 13(6):787–798. https://doi.org/10.1586/14787210.2015.1032939

    Article  CAS  PubMed  Google Scholar 

  11. Wehbe M, Leung AWY, Abrams MJ, Orvig C, Bally MB (2017) A perspective - can copper complexes be developed as a novel class of therapeutics? Dalton Trans 46(33):10758–10773. https://doi.org/10.1039/c7dt01955f

    Article  CAS  PubMed  Google Scholar 

  12. Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208. https://doi.org/10.2174/0929867053764635

    Article  CAS  PubMed  Google Scholar 

  13. Brancaccio D, Gallo A, Piccioli M, Novellino E, Ciofi-Baffoni S, Banci L (2017) [4Fe-4S] cluster assembly in mitochondria and its impairment by copper. J Am Chem Soc 139(2):719–730. https://doi.org/10.1021/jacs.6b09567

    Article  CAS  PubMed  Google Scholar 

  14. Macomber L, Imlay JA (2009) The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci USA 106(20):8344–8349. https://doi.org/10.1073/pnas.0812808106

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gałczyńska K, Ciepluch K, Madej Ł, Kurdziel K, Maciejewska B, Drulis-Kawa Z et al (2019) Selective cytotoxicity and antifungal properties of copper(II) and cobalt(II) complexes with imidazole-4-acetate anion or 1-allylimidazole. Sci Rep 9(1):9777. https://doi.org/10.1038/s41598-019-46224-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. da Silva Dantas FG, de Almeida-Apolonio AA, de Araújo RP, Regiane Vizolli Favarin L, de Castilho PF, de Oliveira Galvão F et al (2018) A promising copper(II) complex as antifungal and antibiofilm drug against yeast infection. Molecules. https://doi.org/10.3390/molecules23081856

    Article  Google Scholar 

  17. Arendsen LP, Thakar R, Sultan AH (2019) The use of copper as an antimicrobial agent in health care, including obstetrics and gynecology. Clin Microbiol Rev. https://doi.org/10.1128/CMR.00125-18

    Article  PubMed  PubMed Central  Google Scholar 

  18. Grass G, Rensing C, Solioz M (2011) Metallic copper as an antimicrobial surface. Appl Environ Microbiol 77(5):1541–1547. https://doi.org/10.1128/AEM.02766-10

    Article  CAS  PubMed  Google Scholar 

  19. Chudzik B, Tracz IB, Czernel G, Fiołka MJ, Borsuk G, Gagoś M (2013) Amphotericin B-copper(II) complex as a potential agent with higher antifungal activity against Candida albicans. Eur J Pharm Sci 49(5):850–857. https://doi.org/10.1016/j.ejps.2013.06.007

    Article  CAS  PubMed  Google Scholar 

  20. Hunsaker EW, Franz KJ (2019) Copper potentiates azole antifungal activity in a way that does not involve complex formation. Dalton Trans 48(26):9654–9662. https://doi.org/10.1039/c9dt00642g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ogundeji AO, Porotloane BF, Pohl CH, Kendrekar PS, Sebolai OM (2018) Copper acyl salicylate has potential as an anti-cryptococcus antifungal agent. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.02345-17

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ząbek A, Nagaj J, Grabowiecka A, Dworniczek E, Nawrot U, Młynarz P et al (2015) Activity of fluconazole and its Cu(II) complex towards. Med Chem Res 24(5):2005–2010. https://doi.org/10.1007/s00044-014-1275-7

    Article  CAS  PubMed  Google Scholar 

  23. Hunsaker EW, McAuliffe KJ, Franz KJ (2020) Fluconazole analogues with metal-binding motifs impact metal-dependent processes and demonstrate antifungal activity in Candida albicans. J Biol Inorg Chem. https://doi.org/10.1007/s00775-020-01796-x

    Article  PubMed  Google Scholar 

  24. Institute CLSICaLS (2017) Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. CLSI standard M38, 3rd edn

  25. Institute CLSICaLS (2017) Reference method for broth dilution antifungal susceptibility testing of yeasts. CLSI standard M27, 4th edn

  26. da Silva SM, Batista-Nascimento L, Gaspar-Cordeiro A, Vernis L, Pimentel C, Rodrigues-Pousada C (2018) Transcriptional regulation of FeS biogenesis genes: a possible shield against arsenate toxicity activated by Yap1. Biochim Biophys Acta Gen Subj 1862(10):2152–2161. https://doi.org/10.1016/j.bbagen.2018.07.013

    Article  CAS  PubMed  Google Scholar 

  27. Ozer HK, Dlouhy AC, Thornton JD, Hu J, Liu Y, Barycki JJ et al (2015) Cytosolic Fe-S cluster protein maturation and iron regulation are independent of the mitochondrial Erv1/Mia40 import system. J Biol Chem 290(46):27829–27840. https://doi.org/10.1074/jbc.M115.682179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shah S, Dalecki AG, Malalasekera AP, Crawford CL, Michalek SM, Kutsch O et al (2016) 8-Hydroxyquinolines are boosting agents of copper-related toxicity in Mycobacterium tuberculosis. Antimicrob Agents Chemother 60(10):5765–5776. https://doi.org/10.1128/AAC.00325-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xie F, Cai H, Peng F (2018) Anti-prostate cancer activity of 8-hydroxyquinoline-2-carboxaldehyde-thiosemicarbazide copper complexes in vivo by bioluminescence imaging. J Biol Inorg Chem 23(6):949–956. https://doi.org/10.1007/s00775-018-1596-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Helsel ME, White EJ, Razvi SZ, Alies B, Franz KJ (2017) Chemical and functional properties of metal chelators that mobilize copper to elicit fungal killing of Cryptococcus neoformans. Metallomics 9(1):69–81. https://doi.org/10.1039/c6mt00172f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rodrigues CF, Silva S, Henriques M (2014) Candida glabrata: a review of its features and resistance. Eur J Clin Microbiol Infect Dis 33(5):673–688. https://doi.org/10.1007/s10096-013-2009-3

    Article  CAS  PubMed  Google Scholar 

  32. Cai Z, Du W, Zhang Z, Guan L, Zeng Q, Chai Y et al (2018) The Aspergillus fumigatus transcription factor AceA is involved not only in Cu but also in Zn detoxification through regulating transporters CrpA and ZrcA. Cell Microbiol 20(10):e12864. https://doi.org/10.1111/cmi.12864

    Article  CAS  PubMed  Google Scholar 

  33. Raffa N, Osherov N, Keller NP (2019) Copper utilization, regulation, and acquisition by Aspergillus fumigatus. Int J Mol Sci. https://doi.org/10.3390/ijms20081980

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gerwien F, Safyan A, Wisgott S, Hille F, Kaemmer P, Linde J et al (2016) A novel hybrid iron regulation network combines features from pathogenic and nonpathogenic yeasts. mBio. https://doi.org/10.1128/mBio.01782-16

    Article  PubMed  PubMed Central  Google Scholar 

  35. Foster AW, Dainty SJ, Patterson CJ, Pohl E, Blackburn H, Wilson C et al (2014) A chemical potentiator of copper-accumulation used to investigate the iron-regulons of Saccharomyces cerevisiae. Mol Microbiol 93(2):317–330. https://doi.org/10.1111/mmi.12661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ji H, Zhang W, Zhou Y, Zhang M, Zhu J, Song Y et al (2000) A three-dimensional model of lanosterol 14alpha-demethylase of Candida albicans and its interaction with azole antifungals. J Med Chem 43(13):2493–2505. https://doi.org/10.1021/jm990589g

    Article  CAS  PubMed  Google Scholar 

  37. Shakoury-Elizeh M, Tiedeman J, Rashford J, Ferea T, Demeter J, Garcia E et al (2004) Transcriptional remodeling in response to iron deprivation in Saccharomyces cerevisiae. Mol Biol Cell 15(3):1233–1243. https://doi.org/10.1091/mbc.e03-09-0642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Haas H (2014) Fungal siderophore metabolism with a focus on Aspergillus fumigatus. Nat Prod Rep 31(10):1266–1276. https://doi.org/10.1039/c4np00071d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zarember KA, Cruz AR, Huang CY, Gallin JI (2009) Antifungal activities of natural and synthetic iron chelators alone and in combination with azole and polyene antibiotics against Aspergillus fumigatus. Antimicrob Agents Chemother 53(6):2654–2656. https://doi.org/10.1128/AAC.01547-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by (i) Project LISBOA-01-0145-FEDER-007660 (“Microbiologia Molecular, Estrutural e Celular”) funded by FEDER funds through COMPETE2020—“Programa Operacional Competitividade e Internacionalização” (POCI); (ii) “Fundação para a Ciência e a Tecnologia” (FCT) through programme IF (IF/00124/2015) to C.P.; (iii) the European Union’s Horizon 2020 research and innovation programme under grant agreement No 810856; (iv) COST Action CA15133, supported by COST (European Cooperation in Science and Technology), (v) PPBI—Portuguese Platform of BioImaging (PPBI-POCI-01-0145-FEDER-022122) co-funded by national funds from OE—“Orçamento de Estado” and by FEDER. A.G.C. was supported by a FCT PhD fellowship (SFRH/BD/118866/2016), and (vi) Austrian Science Fund (FWF) doctoral program “host response in opportunistic infections (HOROS, W1253 to HH)”. We are grateful to Ling Lu (Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, China) for providing the A. fumigatus crpA mutant strain. We thank Cristina Leitão (Research Facilities ITQB NOVA) for technical assistance in HPLC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. M. P. Lima or C. Pimentel.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 533 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaspar-Cordeiro, A., da Silva, S., Aguiar, M. et al. A copper(II)-binding triazole derivative with ionophore properties is active against Candida spp.. J Biol Inorg Chem 25, 1117–1128 (2020). https://doi.org/10.1007/s00775-020-01828-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-020-01828-6

Keywords

Navigation