Skip to main content
Log in

Effect of Impedance Boundary on the Reflection of Plane Waves in Fraction-Order Thermoelasticity in an Initially Stressed Rotating Half-Space with a Magnetic Field

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

A Correction to this article was published on 09 January 2024

This article has been updated

Abstract

In this research article, the propagation of the plane waves in an initially stressed rotating magneto-thermoelastic solid half-space in the context of fractional-order derivative thermoelasticity is studied. The governing equations in the x–z plane are formulated and solved to obtain a cubic velocity equation that indicates the existence of three coupled plane waves. A reflection phenomenon for the incidence of a coupled plane wave for thermally insulated/isothermal surface is studied. The plane surface of the half-space is subjected to impedance boundary conditions, where normal and tangential tractions are proportional to the product of normal and tangential displacement components and frequency, respectively. The reflection coefficients and energy ratios of various reflected waves are computed numerically for a particular material and the effects of rotation, initial stress, magnetic field, fractional-order, and impedance parameters on the reflection coefficients and energy ratios are shown graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

Abbreviations

B :

Magnetic induction, NA1·m1

λ, µ:

Lame′s constants, Nm2

CE :

Specific heat at constant strain, Jkg1·deg1

E :

Electric field strength, Vm1

H :

Magnetic field strength, Am1

h :

Perturbation of magnetic field strength, Am1

J :

Current Am2

n :

Unit vector

Ω :

Angular velocity, Hz

u :

Displacement vector, m

u, w :

Components of the displacement vector

β T :

Thermal coefficient, Nm2·deg1

\(\beta_{T} = (3\lambda + 2\mu )\alpha_{\,0} \,,\) and α 0 :

The coefficient of linear thermal expansion deg1

K:

Thermal conductivities Wm1·deg1

τ0 :

The thermal relaxation time, s

P:

Initial pressure, Nm2

T:

Change in temperature variable, deg

T0 :

The uniform temperature, deg

t :

Time, s

v :

Wave speed, m/s

µe :

Magnetic permeability, H m2

ρ:

Density, kg·m3

ω:

Circular frequency, Hz

σ:

The electric conductivity of the medium, S·m1

θ 0 :

The angle of propagation measured from normal to the half-space, deg, x, y, z are cartesian coordinates

eij :

Components of the strain tensor

σij :

Components of the stress tensor

δij :

Kronecker delta

References

  1. M.A. Biot, J. Appl. Phys. 27, 240–253 (1956)

    Article  MathSciNet  ADS  Google Scholar 

  2. H.W. Lord, Y. Shulman, J. Mech. Phys. Solids. 15, 299–309 (1967)

    Article  ADS  Google Scholar 

  3. A.E. Green, K.A. Lindsay, J. Elast. 2, 1–7 (1972)

    Article  Google Scholar 

  4. A.E. Green, P.M. Naghdi, Proc. Royal Soc. 357, 253–270 (1997)

    ADS  Google Scholar 

  5. A.E. Green, P.M. Naghdi, J. Elast. 31, 189–209 (1993)

    Article  Google Scholar 

  6. R.B. Hetnarski, J.S. Ignaczak, J. Therm Stresses. 22, 451–476 (1999)

    Article  Google Scholar 

  7. J. Ignaczak, M. Ostoja-Starzewski, Oxford University Press (2009).

  8. R. Gutenberg, Bult. Seis. Soc. Amer. 34, 85–102 (1944)

    Article  Google Scholar 

  9. A.J. Willson, Proc Camb. Phil. Soc. 59, 483–488 (1963)

    Article  ADS  Google Scholar 

  10. G. Paria, Adv. Appl. Mech. 10, 73–112 (1967)

    Article  Google Scholar 

  11. M.A Biot, John Wiley and Sons, New York, (1965).

  12. J.D. Achenbach. North-Holland, Amsterdam (1973).

  13. M. Schoenberg, D. Censor, Quart. Appl. Math. 31, 115–125 (1973)

    Article  Google Scholar 

  14. A.N. Sinha, S.B. Sinha, J. Phys. Earth. 22, 237–244 (1974)

    Article  Google Scholar 

  15. A. Chattopadhyay, S. Bose, M. Chakraborty, J. Acoust. Soc. Am. 72, 255–263 (1982)

    Article  ADS  Google Scholar 

  16. R.S. Sidhu, S.J. Singh, J. Acoust. Soc. Am. 72, 255–263 (1982) Acoust. Soc. Am. 74, 1640–1642 (1983)

    Google Scholar 

  17. D.S. Chandrasekharaiah, K.R. Srikantiah, Mech. Res. Comm. 24, 551–560 (1984)

    Article  Google Scholar 

  18. S. Dey, N. Roy, A. Dutta, Indian J. Pure Appl. Math. 16, 1051–1071 (1985)

    Google Scholar 

  19. A. Montanaro, J. Acoust. Soc. Am. 106(3I), 1586–1588 (1999)

    Article  ADS  Google Scholar 

  20. F. Ahmad, A. Khan, Acta Mech. 136, 243–247 (1999)

    Article  Google Scholar 

  21. M. Ezzat, M.I.A. Othman, A.S. El-Karamany, J. Therm Stresses. 24, 411–432 (2001)

    Article  Google Scholar 

  22. I. Abbas, Acta Mech. 186, 229–237 (2006). https://doi.org/10.1007/s00707-006-0314-y

    Article  Google Scholar 

  23. G. Palani, I.A. Abbas, Nonlinear Anal-model 14(1), 73–84 (2009)

    Article  Google Scholar 

  24. I.A. Abbas, H.M. Youssef, Int. J. Thermophys. 33, 1302–1313 (2012). https://doi.org/10.1007/s10765-012-1272-3

    Article  ADS  Google Scholar 

  25. B. Singh, A.K. Yadav, J. Theor. Appl. Mech. 42(3), 33–60 (2012)

    Article  Google Scholar 

  26. A.M. El-Naggar, Z. Kishka, A.M. Abd-Alla, I.A. Abbas, S.M. Abo-Dahab, M. Elsagheer, J. Comput. Theory Nanosci. 10(6), 1408–1417 (2013)

    Article  Google Scholar 

  27. R. Kumar, I.A. Abbas, J. Comput. Theory Nanosci. 10(9), 2241–2247 (2013)

    Article  Google Scholar 

  28. M.I.A. Othman, W.M. Hasona, E.E.M. Eraki, Can. J. Phys. 92, 448–457 (2014)

    Article  ADS  Google Scholar 

  29. M.I.A. Othman, N.T. Mansour, Am. J. Nano Res. Appl. 4, 33–42 (2016)

    Google Scholar 

  30. B. Singh, A.K. Yadav, J. Eng. Thermophys. 89, 428–440 (2016)

    Article  Google Scholar 

  31. S. Mondal, A. Sur, M. Kanoria, Mech. Based Des. Struct. (2019). https://doi.org/10.1080/15397734.2019.1701493

    Article  Google Scholar 

  32. F. Alzahrani, I.A. Abbas, Int. J. Thermophys. 41, 95 (2020). https://doi.org/10.1007/s10765-020-02673-0

    Article  ADS  Google Scholar 

  33. T. Saeed, I. Abbas, M. Marin, Symmetry. 12(3), 488 (2020)

    Article  ADS  Google Scholar 

  34. H.M. Youssef, J. Heat Transf. 132(6), 1–7 (2010)

    Article  Google Scholar 

  35. H. Sherief, A.M.A. El-Sayed, A.M.A. El-Latief, Int. J. Solids Struct. 47(2), 269–275 (2010)

    Article  Google Scholar 

  36. H.M. Youssef, J. Vib. Cont. 22(18), 1–18 (2016)

    Article  Google Scholar 

  37. F. Mainardi, Bulgarian Academy of Sciences, Sofia, 309–334 (1998).

  38. Y.Z. Povstenko, J. Math. Sci. 162(2), 296–305 (2009)

    Article  MathSciNet  Google Scholar 

  39. N. Sarkar, A. Lahiri, Int. J. Appl. Mech. 4(3), 1–20 (2012)

    Article  Google Scholar 

  40. M. Du, Z. Wang, H. Hu, Sci. Rep. 3, 3431 (2013). https://doi.org/10.1038/srep03431

    Article  ADS  Google Scholar 

  41. Y. Yu, X. Tian, T. Lu, Eur. J. Mech. A/Solid. 42, 188–202 (2013)

    Article  ADS  Google Scholar 

  42. Y. Povestenko, Solid Mechanics and Its Applications (Springer, Berlin, 2015)

    Google Scholar 

  43. S. Shaw, J. Heat Trans. 139(9), 092005 (2017). https://doi.org/10.1115/1.4036461

    Article  Google Scholar 

  44. G. Mittal, V.S. Kulkarni, J. Therm. Stresses. 42(9), 1136–1152 (2019)

    Article  Google Scholar 

  45. S. Bhoyar, V. Varghese, L. Khalsa, J. Therm. Stresses. 43(6), 762–783 (2020)

    Article  Google Scholar 

  46. H.F. Tiersten, J. Appl. Phys. 40, 770–789 (1969)

    Article  ADS  Google Scholar 

  47. P.G. Malischewsky, Elsevier: Amsterdam, (1987).

  48. E. Godoy, M. Durn, J.C. Ndlec, Wave Motion 49, 585–594 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  49. P.C. Vinh, T.T.T. Hue, Wave Motion 51, 1082–1092 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  50. B. Singh, A.K. Yadav, S. Kaushal, J. Eng. Technol. Res. 8(4), 405–413 (2017)

    Article  Google Scholar 

  51. B. Singh, A.K. Yadav, D. Gupta, J. Ocean Eng. Sci. 4, 122–131 (2019)

    Article  Google Scholar 

  52. A.K. Yadav, AIP Adv. 10, 075217 (2020). https://doi.org/10.1063/5.0008377

    Article  ADS  Google Scholar 

Download references

Funding

No funding from any agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Kumar Yadav.

Ethics declarations

Conflict of Interest

There is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A.K. Effect of Impedance Boundary on the Reflection of Plane Waves in Fraction-Order Thermoelasticity in an Initially Stressed Rotating Half-Space with a Magnetic Field. Int J Thermophys 42, 3 (2021). https://doi.org/10.1007/s10765-020-02753-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02753-1

Keywords

Navigation