Skip to main content

Advertisement

Log in

Thermal Conductivity of Supercritical CO2-Saturated Coal

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The present study reports the effective thermal conductivity (ETC) of supercritical (SC) CO2-saturated black coal sample at temperatures from (304.15 to 323.15) K and pressures up to 20 MPa using a steady-state guarded parallel-plate method. The expanded uncertainty of thermal conductivity, pressure, and temperature measurements at the 95 % confidence level with a coverage factor of k = 2 was estimated to be 4 % (in the range of regular behavior of the thermal conductivity) and 5–6 % (in the critical region of the saturated CO2), 0.1 %, and 30 mK, respectively. This uncertainty in ETC measurement does not include the uncertainty due to contact thermal resistance and radiative conductivity inherent in this method. The effect of critical anomaly of thermal conductivity and other thermodynamic properties of pure CO2 near- and supercritical conditions on the total measured values of the ETC of SC CO2-saturated coal was studied. The thermal conductivity behavior of pure SC CO2 in coal pores was interpreted based on finite-size scaling theory of critical phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.M. White, D.H. Smith, K.L. Jones, A.L. Goodman, S.A. Jikich, R.B. LaCount, S.B. DuBose, E. Ozdemir, B.I. Morsi, K.T. Schroeder, A Review. Energy Fuel 19, 659 (2005)

    Article  Google Scholar 

  2. P.F. Fulton, C.A. Parente, B.A. Rogers, N. Shah, A.A. Reznik, J. Soc. Pet. Eng. 65, 1 (1980)

    Google Scholar 

  3. A.A. Reznik, P.K. Singh, W.L. Foley, J. Soc. Pet. Eng. 24, 521 (1984)

    Article  Google Scholar 

  4. L.E. Arri, D. Yee, W.L. Morgan, M.W. Jeaansonne, In: Cosper, W.Y., editor. Proc Rocks Mountain Regional Meeting, Soc Pet Eng, May 18–21, SPE Paper N24363 (1992)

  5. J. Guohai, J.C. Pashin, J.W. Payton, J. W., In: International Coalbed Methane Symposium Proceedings, Tuscaloosa, Alabama, University of Alabama College of Continuing Studies, 2003 Paper # 0321, 13 p

  6. R.T. Yang, J.T. Saunders, J. Fuel 64, 616 (1985)

    Article  Google Scholar 

  7. J.C. Pashin, M.R. McIntyre, Int. J. Coal Geol. 54, 167 (2003)

    Article  Google Scholar 

  8. R.M. Butler, Calgary Alberta: Grav Drain Inc. (1997)

  9. A. Rostami, M. Masoudi, A. Ghaderi-Ardakani, M. Arabloo, M. Amani, Int. J. Thermophysics 37, 59 (2016)

    Article  ADS  Google Scholar 

  10. B. Vaferi, V. Gitifar, P. Darvishi, D. Mowla, J. Petrol. Sci. Eng. 119, 69 (2014)

    Article  Google Scholar 

  11. J.C. Pashin, W.E. Ward, R.B. Winston, R.V. Chandler, D.E. Bolin, K.E. Richter, W.E. Osborne, J.C. Sarnrcki, Geol. Surv. Bull. 145, 127 (1991)

    Google Scholar 

  12. J.C. Pashin, R.E. Carroll, R.H.Jr. Groshong, D.E. Raymond, M.R. McIntyre, W.J. Payton, Ann. Tech. Prog. Rept., U.S. Dept. Energy, Nat. Energy Tech. Lab. Contract DE-FC-00NT40927, 190 (2003)

  13. N.I. Diamantonis, G.C. Boulougouris, D.M. Tsangaris, M.J. El Kadi, H. Saadawi, S. Negahban, I.G. Economou, Chem. Eng. Res. Design 91, 1793 (2013)

    Article  Google Scholar 

  14. B.M. Kroos, F. van Bergen, Y. Gensterblum, N. Siemons, H.J.M. Pagnier, P. David, Int. J. Coal Geol. 51, 69 (2001)

    Article  Google Scholar 

  15. J.C. Pashin, M.R. McIntyre, In: International Coalbed Methane Symposium Proceedings, Tuscaloosa, Alabama, University of Alabama College of Continuing Studies, 2003, Paper # 0316, 12 p

  16. K. Pruess, Environ Geol 54, 1677 (2008)

    Article  ADS  Google Scholar 

  17. N.G. Polikhronidi, R.G. Batyrova, A.M. Aliev, I.M. Abdulagatov, Review. J. Thermal Sci 28, 394 (2019)

    Article  Google Scholar 

  18. S. Bachu, D. Simbeck, K. Thambimuthu, IPCC–Intergovernmental Panel on Climate Change (2005)

  19. Strategic Research Agenda. https://cordis.europa.eu/technology-platforms/pdf/zeroemission.pdf (2007)

  20. D.C. Thomas, Europe: Elsevier Science Ltd., 1 and 2 (2005)

  21. Z.Z. Abdulagatova, I.M. Abdulagatov, S.N. Emirov, Int. J. Rock Mech. Min. Sci. 46, 1055 (2009)

    Article  Google Scholar 

  22. Z.Z. Abdulagatova, I.M. Abdulagatov, A.I. Abdulagatov, Advances in Materials Science Research, vol. 11 (Nova Science Publisher Inc., New York, 2011)

    Google Scholar 

  23. I.M. Abdulagatov, S.N. Emirov, T.A. Tsomaeva, Kh.A. Gairbekov, S.Y. Askerov, Russ. High Temp. 36, 401 (1998)

    Google Scholar 

  24. I.M. Abdulagatov, S.N. Emirov, T.A. Tsomaeva, K.A. Gairbekov, S.Y. Askerov, N.A. Magomedova, J. Phys. Chem. Solids 6, 779 (2000)

    Article  ADS  Google Scholar 

  25. I.M. Abdulagatov, S.N. Emirov, Kh.A. Gairbekov, N.S. Magomaeva, S.Y. Askerov, E.N. Ramazanova, Ind. Eng. Chem. Res. 41, 3586 (2002)

    Article  Google Scholar 

  26. I.M. Abdulagatov, S.N. Emirov, Z.Z. Abdulagatova, S.Y. Askerov, J. Chem. Eng. Data 51, 22 (2006)

    Article  Google Scholar 

  27. Z.Z. Abdulagatova, S.N. Emirov, I.M. Abdulagatov, J. Pet. Sci. Eng. 73, 141 (2010)

    Article  Google Scholar 

  28. M.G. Alishaev, I.M. Abdulagatov, Z.Z. Abdulagatova, Eng. Geol. 135, 24 (2012)

    Article  Google Scholar 

  29. A.E. Ramazanova, I.M. Abdulagatov, P.G. Ranjith, J. Chem. Eng. Data 63, 1534 (2018)

    Article  Google Scholar 

  30. JCGM, Evaluation of Measurement Data – Guide to the Expression of Uncertainty in Measurement (JCGM 100), BIPM (2008)

  31. Guide to the Expression of Uncertainty in Measurement; ISO: Geneva, Switzerland (ISBN 92-67-10188-9) (1993)

  32. A.M. Hofmeister, J.M. Branlund, M. Pertermann, Treatise in Geophysics (G. Schubert, ed.), 2, Mineral Physics (G.D. Price, ed.), Elsevier: The Nitherlands, 543 (2007)

  33. K. Pruess, Geothermics 35, 351 (2006). https://doi.org/10.1016/j.geothermics.2006.08.002

    Article  Google Scholar 

  34. J. Na, T. Xu, Y. Yuan, B. Feng, H. Tian, X. Bao, A case study of Songliao Basin, China. Appl. Geochem. 59, 166 (2015). https://doi.org/10.1016/j.apgeochem.2015.04.018

    Article  Google Scholar 

  35. F. Luo, R.N. Xu, P.X. Jiang, J. Energy 64, 307 (2014)

    Article  Google Scholar 

  36. L. Zhang, J. Ezekiel, D. Li, J. Pei, S. Ren, Appl. Energy 122, 237 (2014)

    Article  Google Scholar 

  37. L. Zhang, X. Li, Y. Zhang, G. Cui, C. Tan, S. Ren, J. Energy 123, 139 (2017)

    Article  Google Scholar 

  38. X. Huang, J. Zhu, J. Li, B. Bai, G. Zhang, Int. Commun Heat Mass Transf. 1, 111 (2016)

    Google Scholar 

  39. M. Fard, K.H. Hooman, H.T. Chua, Int. Commun. Heat Mass Transfer 37, 1447 (2010)

    Article  Google Scholar 

  40. F. Ogino, M. Yamamura, T. Fukuda, J. Geothermics 28, 21 (1999)

    Article  Google Scholar 

  41. E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23, NIST Reference Fluid Thermodynamic and Transport Properties, REFPROP, version 10.1, Standard Reference Data Program, National Institute of Standards and Technology, Gaithersburg, MD (2018)

  42. R.A. Perkins, J.V. Sengers, I.M. Abdulagatov, M.L. Huber, Int. J. Thermophys. 34, 191 (2013)

    Article  ADS  Google Scholar 

  43. N.G. Polikhronidi, R.G. Batyrova, I.M. Abdulagatov, J. Thermal Analys. Calorimetry 135(2), 1335 (2019)

    Article  Google Scholar 

  44. N.G. Polikhronidi, R.G. Batyrova, J.W. Magee, I.M. Abdulagatov, J. Chem. Thermodyn. 133, 46 (2019)

    Article  Google Scholar 

  45. M. Fisher, M.N. Barber, Phys. Rev. Lett. 28, 1516 (1972)

    Article  ADS  Google Scholar 

  46. J.V. Sengers, J.M.H. Levelt-Sengers, Annual Rev. Phys. Chem. 37, 189 (1986)

    Article  ADS  Google Scholar 

  47. I.M. Abdulagatov, Z.Z. Abdulagatova, S.N. Kallaev, Z.M. Omarov, A.G. Bakmaev, P.G. Ranjith, Proc. V Int. Conf. Renewal Energy: Problems and Prosperities, 23–26 October (2017); Makhachkala, Geothermal Research Inst. Rus. Acad. Sci., Dagestan, Russian Federation, 34 (2017)

  48. M.R. Frenkel, V. Chirico, C.D. Diky, Ch. Muzny, A.F. Kazakov, J.W. Magee, I.M. Abdulagatov, Jeong Won Kang, NIST Thermo Data Engine, NIST Standard Reference Database 103b-Pure Compound, Binary Mixtures, and Chemical Reactions, Version 5.0, National Institute Standards and Technology, Boulder, Colorado-Gaithersburg, MD (2010)

Download references

Acknowledgment

The study has been supported by Russian Scientific Foundation (Project # 19-08-00352)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilmutdin M. Abdulagatov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramazanova, A.E., Abdulagatov, I.M. Thermal Conductivity of Supercritical CO2-Saturated Coal. Int J Thermophys 42, 2 (2021). https://doi.org/10.1007/s10765-020-02756-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02756-y

Keywords

Navigation