Skip to main content
Log in

On the Applicability of Lindemann’s Law for the Melting of Alkali Metals

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The experimental melting data for alkali metals reported in the literature reveal that the melting temperature becomes maximum at a particular value of high pressure and then decreases with the increase in pressure. We demonstrate in the present communication that the Lindemann law does not yield negative values for the melting slopes of solids at high pressures as far as the bulk modulus increases and the Grüneisen parameter decreases with the increase in pressure such that the pressure derivative of bulk modulus and the Grüneisen parameter remain positive finite. Arafin and Singh have produced an agreement with the experimental melting data for alkali metals with the help of the Lindemann law using quadratic equations in powers of pressure for the Grüneisen parameter and bulk modulus. These quadratic equations are shown here to be inadequate and invalid at high pressures. For explaining the negative slopes of the melting curves, we need a theory of melting which should take into account the structural and electronic changes at melting. We present a discussion of some very important and highly relevant studies (Martinez-Canales and Bergara; Deng and Lee) based on fundamental considerations and ab initio calculations used recently for explaining the turnover in the melting curves of alkali metals and ferropericlase, an important Earth lower mantle mineral. The structural and electronic changes are responsible for the anomalous thermoelastic behavior yielding negative values of elastic moduli and Grüneisen parameter both, thus making the Lindemann law applicable to materials under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Arafin, R.N. Singh, Int. J. Mod. Phys. B 30, 1750031 (2016)

    Google Scholar 

  2. S. Arafin, R.N. Singh, J. Phys. Chem. Solids 91, 101–105 (2016)

    Article  ADS  Google Scholar 

  3. F.A. Lindemann, Physik, Z. 11, 609–612 (1910)

    Google Scholar 

  4. J.J. Gilvarry, Phys. Rev. 102, 308–316 (1956)

    Article  ADS  Google Scholar 

  5. H.D. Leudemann, G.C. Kennedy, J. Geophys. Res. 73, 2795–2805 (1968)

    Article  ADS  Google Scholar 

  6. R. Boehler, C.S. Zha, Physica B+C 139–140, 233–236 (1986)

    Article  ADS  Google Scholar 

  7. D. Errandonea, J. Phys. Chem. Solids 67, 2017–2026 (2006)

    Article  ADS  Google Scholar 

  8. B. Rousseau, Y. Xie, Y. Ma, A. Bergara, Eur. Phys. J. B 81, 1–14 (2011)

    Article  ADS  Google Scholar 

  9. J. Hama, K. Suito, J. Phys, Condens. Matter 8, 67–71 (1996)

    Article  ADS  Google Scholar 

  10. F.D. Stacey, P.M. Davis, Phys. Earth Planet. Inter. 142, 137–184 (2004)

    Article  ADS  Google Scholar 

  11. A. Vijay, Int. J. Mod. Phys. B 33, 1975001 (2019)

    Article  ADS  Google Scholar 

  12. M. Martinez-Canales, A. Bergara, J. Phys. Chem. Solids 69, 2151–2154 (2008)

    Article  ADS  Google Scholar 

  13. E. Gregoryanz, O. Degtyareva, M. Somayazulu, R.J. Hemley, H. Mao, Phys. Rev. Lett. 94, 185502 (2005)

    Article  ADS  Google Scholar 

  14. J.B. Neaton, N.W. Ashcroft, Nature 400, 141–144 (1999)

    Article  ADS  Google Scholar 

  15. J.B. Neaton, N.W. Ashcroft, Phys. Rev. Lett. 86, 2830–2833 (2001)

    Article  ADS  Google Scholar 

  16. O. Narygina, E.E. MacBride, G.W. Stinton, M.I. McMahon, Phys. Rev. B 84, 054111 (2011)

    Article  ADS  Google Scholar 

  17. L. Burakovsky, D.L. Preston, J. Phys. Chem. Solids 65, 1581–1587 (2004)

    Article  ADS  Google Scholar 

  18. J. Shanker, B.P. Singh, H.K. Baghel, Phys. B 387, 409–414 (2007)

    Article  ADS  Google Scholar 

  19. P.L. Dorogokupets, A.R. Oganov, Phys. Rev. B 75, 24115 (2007)

    Article  ADS  Google Scholar 

  20. L. Knopoff, J. Geophys. Res. 68, 2929–2932 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  21. O.L. Anderson, Equation of state of solids for Geophysics and Ceramic Science (Oxford University Press, Oxford, 1995)

    Google Scholar 

  22. F.D. Stacey, Rep. Prog. Phys. 68, 341–383 (2005)

    Article  ADS  Google Scholar 

  23. J.C. Slater, Introduction to Chemical Physics (McGraw Hill, New York, 1939)

    Google Scholar 

  24. J.S. Dugdale, D.K.C. MacDonald, Phys. Rev. 89, 832–834 (1953)

    Article  ADS  Google Scholar 

  25. V. YaVashchenko, V.N. Zubarev, Sov. Phys. Solid State 5, 653–655 (1963)

    Google Scholar 

  26. M.A. Barton, F.D. Stacey, Phys. Earth Planet. Inter. 39, 167–177 (1985)

    Article  ADS  Google Scholar 

  27. K. Sunil, S.B. Sharma, B.S. Sharma, Inter. J. Mod. Phys. B 32, 1850339 (2018)

    Article  ADS  Google Scholar 

  28. W.B. Holzapfel, M. Hartwig, W. Sievers, J. Phys. Chem. Ref. Data 30, 515–529 (2001)

    Article  ADS  Google Scholar 

  29. J. Deng, K.K.M. Lee, Am. Miner. 104, 1189–1196 (2019)

    Article  ADS  Google Scholar 

  30. J. Shanker, S.S. Kushwah, P. Kumar, Phys. B 239, 337–344 (1997)

    Article  ADS  Google Scholar 

  31. S. Gaurav, B.S. Sharma, S.B. Sharma, S.C. Upadhyaya, Phys. B 332, 328–339 (2002)

    Article  ADS  Google Scholar 

  32. S.S. Kushwah, H.C. Shrivastava, K.S. Singh, Phys. B 388, 20–25 (2007)

    Article  ADS  Google Scholar 

  33. H.C. Shrivastava, Phys. B 404, 251–254 (2009)

    Article  ADS  Google Scholar 

  34. S.S. Kushwah, N.K. Bhardwaj, Int. J. Mod. Phys. B 24, 1187–1200 (2010)

    Article  ADS  Google Scholar 

  35. P.K. Vidyarthi, B.P. Singh, Phys. B 410, 259–261 (2013)

    Article  ADS  Google Scholar 

  36. J. Shanker, P. Dulari, P.K. Singh, Phys. B 404, 4083–4085 (2009)

    Article  ADS  Google Scholar 

  37. J. Shanker, K. Sunil, B.S. Sharma, Phys. B 407, 2082–2083 (2012)

    Article  ADS  Google Scholar 

  38. J. Shanker, K. Sunil, B.S. Sharma, Phys. Earth Planet. Inter. 262, 41–47 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Shanker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanker, J., Anand, K., Sharma, B.S. et al. On the Applicability of Lindemann’s Law for the Melting of Alkali Metals. Int J Thermophys 41, 170 (2020). https://doi.org/10.1007/s10765-020-02751-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02751-3

Keywords

Navigation