Skip to main content
Log in

Optimization-Based Fuzzy Energy Management Strategy for PEM Fuel Cell/Battery/Supercapacitor Hybrid Construction Excavator

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Fuel cell hybrid electric construction equipment (FCHECE) is known as a promising solution to achieve the goal of energy saving and environment protection. Energy management strategy is a key technology of FCHECE, which splits the energy flow between power sources. This paper presents a novel optimal energy management strategy for a hybrid electric-powered hydraulic excavator system to enhance power performance, power sources lifespan, and fuel economy. As for the proposed powertrain configuration, fuel cell serves as a primary energy source, and supercapacitor and battery are considered as energy storages. The integration of supercapacitor and battery in fuel cell vehicle has advantages of improving power performance and storing the regenerative energy for future usage. An energy management strategy based on fuzzy logic control and a rule-based algorithm is proposed to effectively distribute the power between the three sources and reuse the regenerative energy. Furthermore, the parameters of the fuzzy logic system are optimized using the combination of a backtracking search algorithm which provides a good direction to the global optimal region and sequential dynamic programming as a local search method to fine-tune the optimal solution in order to reduce the hydrogen consumption and prolong the lifetime of the power sources. Simulation results show that the proposed energy management strategy enhances the vehicle performance, improves fuel economy of the FCHECE by 10.919%, increase battery and supercapacitor charge-sustaining capability as well as efficiency of the fuel cell system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

BAT:

Battery

BSA:

Backtracking search algorithm

EMS:

Energy management strategy

ERS:

Energy regeneration system

FCHECE:

Fuel cell hybrid electric construction equipment

FCV:

Fuel cell vehicle

GA:

Genetic algorithm

PEMFC:

Polymer electrolyte membrane fuel cell

SC:

Supercapacitor

SQP:

Sequential quadratic programming

\(C_{dl}\) :

Double-layer capacitance (F)

\(c^{\prime}_{O2}\) :

Hydrogen concentration at the anode/membrane interface \({\text{(mol cm}}^{{ - 3}} {)}\)

\(d_{SQP}\) :

Standard SQP search direction

\(E_{N}\) :

Nernst voltage (V)

\(F\) :

Faraday constant \({\text{(C mol}}^{{ - 1}} {)}\)

\(I_{B}\) :

Battery current (A)

\(I_{FC}\) :

Fuel cell current (A)

\(I_{SC}\) :

Supercapacitor current (A)

\(i_{O}\) :

Output current of the converter (A)

\(i_{L}\) :

Current through the inductor (A)

\(J\) :

Multi-objective cost function

\(J_{i} \,(i = \overline{1,4} )\) :

Single-objective cost functions

\(J_{opt}\) :

Optimal cost function

\(k_{a}\) :

Anode flow constant \({\text{(mol s}}^{{ - 1}} {\text{ atm}}^{{ - 1}} {)}\)

\(k_{c}\) :

Cathode flow constant \({\text{(mol s}}^{{ - 1}} {\text{ atm}}^{{ - 1}} {)}\)

L :

Inductance of the inductor in the DC/DC converter (H)

\(l_{mem}\) :

Membrane thickness (cm)

\(M^{*}\) :

Population size

\(M_{H2}\) :

Molecular weight of hydrogen

\(Mutant\) :

Mutation operator

\(\dot{m}_{H2}\) :

Flowrate of hydrogen (kg/s)

\(N\) :

Number of fuel cells in a stack

\(n_{i} \,\,(i = \overline{1,4} )\) :

Numbers of active membership functions

\(\dot{n}_{H2in}\) :

Hydrogen inlet flowrate \({\text{(mol s}}^{{ - 1}} {)}\)

\(\dot{n}_{O2in}\) :

Oxygen inlet flowrate \({\text{(mol s}}^{{ - 1}} {)}\)

\(n^{*}\) :

Dimension of the variable vector

\(oldP\) :

Historical population

\(P\) :

Target population

\(P_{opt}\) :

Optimal population

\(P_{d}\) :

Power demand (W)

\(P_{d\max }\) :

Maximum value of power demand (W)

\(P_{FC}\) :

Power of a fuel cell stack (W)

\(P_{FC1}\) :

Lower limit of the fuel cell high-efficiency power region

\(P_{FC2}\) :

Upper limit of the fuel cell high-efficiency power region

\(P_{FC\min }\) :

Minimum value of fuel cell stack power

\(P_{FC\max }\) :

Maximum value of fuel cell stack power

\(P_{B}\) :

Power of battery (W)

\(P_{SC}\) :

Power of supercapacitor (W)

\(P_{{{\text{tank}}}}\) :

Tank pressure (atm)

\(P_{BPR}\) :

Back pressure (atm)

\(P_{H2}\) :

Partial pressure of hydrogen (atm)

\(P_{O2}\) :

Partial pressure of oxygen (atm)

\(p_{i} \,(i = \overline{1,5} )\) :

Polynomial coefficient

\(G_{\max 1}\) :

Maximal evolution generation of the BSA

\(G_{\max 2}\) :

Maximal evolution generation of the SQP

\(Q_{MaxB}\) :

Maximum battery capacity (C)

\(Q_{MaxSC}\) :

Maximum supercapacitor capacity (C)

\(R\) :

Universal gas constant \({\text{(J mol}}^{{ - 1}} {\text{ K}}^{{ - 1}} {)}\)

\(R_{FC}\) :

Inertial ohmic resistance of the membrane

\(R_{d}\) :

Sum of the activation resistance and concentration resistance \((\Omega )\)

\(R_{L}\) :

Resistor of the inductor in the DC/DC converter \((\Omega )\)

\(R_{SC}\) :

Supercapacitor internal resistance \((\Omega )\)

\(R_{B}\) :

Battery internal resistance \((\Omega )\)

\(r_{mem}\) :

Membrane resistivity \({{(\Omega cm)}}\)

\(r_{FC}\) :

Percentage of power distribution for the fuel cell

\(r_{B}\) :

Percentage of power sharing between the battery and the supercapacitor

\(SOC_{B}\) :

Battery state of charge

\(SOC_{B\min }\) :

Lower bound of \(SOC_{B}\)

\(SOC_{B\max }\) :

Upper bound of \(SOC_{B}\)

\(SOC_{SC}\) :

Supercapacitor state of charge

\(SOC_{SC\min }\) :

Lower bound of \(SOC_{SC}\)

\(SOC_{SC\max }\) :

Upper bound of \(SOC_{SC}\)

\(s,in_{1} ,in_{2} ,in_{3}\) :

Input variables for fuzzy loops

\(T\) :

Fuel cell temperature (K)

\(t\) :

Time (s)

\(t_{0}\) :

Initial time (s)

\(t_{f}\) :

Final time (s)

\(U_{B}\) :

Battery voltage (V)

\(U_{SC}\) :

Supercapacitor voltage (V)

\(U_{SC\max }\) :

Supercapacitor maximum voltage (V)

\(V_{FC}\) :

Output voltage of a fuel cell stack (V)

\(V_{I}\) :

Input voltage of DC/DC converter (V)

\(V_{O}\) :

Output voltage of DC/DC converter (V)

\(V_{a}\) :

Cathode volume \({\text{(m}}^{{3}} {)}\)

\(V_{c}\) :

Anode volume \({\text{(m}}^{{3}} {)}\)

\(v_{FC}\) :

Output voltage of a single fuel cell (V)

\(v_{ACT}\) :

Activation voltage of fuel cell stack (V)

\(v_{CONC}\) :

Concentration voltage of fuel cell stack (V)

\(v_{O}\) :

Internal ohmic voltage of fuel cell stack (V)

\(x_{l} ,x_{e} ,x_{c}\) :

Left, right, and center parameters of the membership function

\(z\) :

Valence of the ionic species

\(\Delta P_{FC} (t)\) :

Rate of fuel cell power change (W/s)

\(\Delta P_{B} (t)\) :

Rate of battery power change (W/s)

\(\eta\) :

Efficiency of the fuel cell power source

\(\eta_{DC}\) :

Efficiency of the DC/DC converter

\(\kappa\) :

Ratio of output voltage and input voltage of the converter

\(\lambda\) :

Membrane humidity

\(\lambda_{i} \,\,(i = \overline{1,3)}\) :

Weighting factors

\(\xi_{i} \,\left( {i = \overline{1,4} } \right)\) :

Parametric coefficients

\((i_{FC} /A)_{L}\) :

Fuel cell limiting current density \({\text{(A/m}}^{{2}} {)}\)

References

  1. Li, T., Huang, L., & Liu, H. (2019). Energy management and economic analysis for a fuel cell supercapacitor excavator. Energy, 172, 840–851. https://doi.org/10.1016/j.energy.2019.02.016.

    Article  Google Scholar 

  2. Li, T., Liu, H., & Ding, D. (2018). Predictive energy management of fuel cell supercapacitor hybrid construction equipment. Energy, 149, 718–729. https://doi.org/10.1016/j.energy.2018.02.101.

    Article  Google Scholar 

  3. Wang, H., Wang, Q., & Hu, B. (2017). A review of developments in energy storage systems for hybrid excavators. Automation in Construction, 80, 1–10. https://doi.org/10.1016/j.autcon.2017.03.010.

    Article  Google Scholar 

  4. Li, Q., Chen, W., Liu, Z., Li, M., & Ma, L. (2015). Development of energy management system based on a power sharing strategy for a fuel cell-battery-supercapacitor hybrid tramway. Journal of Power Sources, 279, 267–280. https://doi.org/10.1016/j.jpowsour.2014.12.042.

    Article  Google Scholar 

  5. Kang, Y. S., Jo, S., Choi, D., Kim, J. Y., Park, T., & Yoo, S. J. (2019). Pt-sputtered ti mesh electrode for polymer electrolyte membrane fuel cells. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(2), 271–279. https://doi.org/10.1007/s40684-019-00077-6.

    Article  Google Scholar 

  6. Bétournay, M. C., Desrivières, G., Laliberté, P., Laflamme, M., Miller, A. R., & Barnes, D. L. (2003). The fuel cell mining vehicles development program: An update. CIM Bulletin, 96(1074), 72–76.

    Google Scholar 

  7. Li, T., Liu, H., Zhao, D., & Wang, L. (2016). Design and analysis of a fuel cell supercapacitor hybrid construction vehicle. International Journal of Hydrogen Energy, 41(28), 12307–12319. https://doi.org/10.1016/j.ijhydene.2016.05.040.

    Article  Google Scholar 

  8. Zhang, Z., Mortensen, H. H., Jensen, J. V., & Andersen, M. A. E. Fuel Cell and Battery Powered Forklifts. In 2013 IEEE Vehicle Power and Propulsion Conference (VPPC), 15–18 Oct. 2013 2013 (pp. 1–5). doi: 10.1109/VPPC.2013.6671683.

  9. Min-Ho, S., Tae-Ho, E., Young-Hoon, P., & Chung-Yuen, W. Design and control of fuel cell-battery hybrid system for forklift. In 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), 1–4 June 2016 2016 (pp. 584–589). https://doi.org/10.1109/ITEC-AP.2016.7513020.

  10. Hanley, S. (2018). Scandinavia is home to heavy-duty electric construction equipment & truck development. https://cleantechnica.com/2018/01/30/scandinavia-home-heavy-duty-electric-construction-equipment-truck-development/. Accessed 15 Jan 2020

  11. Yi, H.-S., Jeong, J.-B., Cha, S.-W., & Zheng, C.-H. (2018). Optimal component sizing of fuel cell-battery excavator based on workload. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(1), 103–110. https://doi.org/10.1007/s40684-018-0011-z.

    Article  Google Scholar 

  12. Dang, T. D., Do, T. C., Truong, H. V. A., Ho, C. M., Dao, H. V., YINGXIAO, Y., et al. (2019). Design, modeling and analysis of a PEM fuel cell excavator with supercapacitor/battery hybrid power source. Journal of Drive and Control, 16(1), 45–53.

    Google Scholar 

  13. Do, C. T., Truong, V. H., Dao, V. H., Ho, M. C., To, D. X., Dang, D. T., et al. (2019). Energy management strategy of a pem fuel cell excavator with a supercapacitor/battery hybrid power source. Energies, 12(22), doi: 10.3390/en12224362.

  14. Xu, L., Li, J., Hua, J., Li, X., & Ouyang, M. (2009). Optimal vehicle control strategy of a fuel cell/battery hybrid city bus. International Journal of Hydrogen Energy, 34(17), 7323–7333. https://doi.org/10.1016/j.ijhydene.2009.06.021.

    Article  Google Scholar 

  15. Azib, T., Bethoux, O., Remy, G., & Marchand, C. (2011). Saturation management of a controlled fuel-cell/ultracapacitor hybrid vehicle. IEEE Transactions on Vehicular Technology, 60(9), 4127–4138. https://doi.org/10.1109/TVT.2011.2165092.

    Article  Google Scholar 

  16. Dinh, T. X., Thuy, L. K., Tien, N. T., Dang, T. D., Ho, C. M., Truong, H. V. A., et al. (2019). Modeling and energy management strategy in energetic macroscopic representation for a fuel cell hybrid electric vehicle. Journal of Drive and Control, 16(2), 80–90.

    Google Scholar 

  17. Thounthong, P., Raël, S., & Davat, B. (2009). Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications. Journal of Power Sources, 193(1), 376–385. https://doi.org/10.1016/j.jpowsour.2008.12.120.

    Article  Google Scholar 

  18. Trovão, J. P., Pereirinha, P. G., Jorge, H. M., & Antunes, C. H. (2013). A multi-level energy management system for multi-source electric vehicles—an integrated rule-based meta-heuristic approach. Applied Energy, 105, 304–318. https://doi.org/10.1016/j.apenergy.2012.12.081.

    Article  Google Scholar 

  19. Kim, Y., Salvi, A., Siegel, J. B., Filipi, Z. S., Stefanopoulou, A. G., & Ersal, T. (2014). Hardware-in-the-loop validation of a power management strategy for hybrid powertrains. Control Engineering Practice, 29, 277–286. https://doi.org/10.1016/j.conengprac.2014.04.008.

    Article  Google Scholar 

  20. Wang, Y., Sun, Z., & Chen, Z. (2019). Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine. Applied Energy, 254, 113707. https://doi.org/10.1016/j.apenergy.2019.113707.

    Article  Google Scholar 

  21. Hemi, H., Ghouili, J., & Cheriti, A. (2015). Combination of Markov chain and optimal control solved by Pontryagin’s minimum principle for a fuel cell/supercapacitor vehicle. Energy Conversion and Management, 91, 387–393. https://doi.org/10.1016/j.enconman.2014.12.035.

    Article  Google Scholar 

  22. Lee, W., Jeoung, H., Park, D., & Kim, N. (2019). An adaptive concept of PMP-based control for saving operating costs of extended-range electric vehicles. IEEE Transactions on Vehicular Technology, 68(12), 11505–11512. https://doi.org/10.1109/TVT.2019.2942383.

    Article  Google Scholar 

  23. Hu, Z., Li, J., Xu, L., Song, Z., Fang, C., Ouyang, M., et al. (2016). Multi-objective energy management optimization and parameter sizing for proton exchange membrane hybrid fuel cell vehicles. Energy Conversion and Management, 129, 108–121. https://doi.org/10.1016/j.enconman.2016.09.082.

    Article  Google Scholar 

  24. Zhou, W., Yang, L., Cai, Y., & Ying, T. (2018). Dynamic programming for new energy vehicles based on their work modes Part II: Fuel cell electric vehicles. Journal of Power Sources, 407, 92–104. https://doi.org/10.1016/j.jpowsour.2018.10.048.

    Article  Google Scholar 

  25. Wang, Y., Moura, S. J., Advani, S. G., & Prasad, A. K. (2019). Power management system for a fuel cell/battery hybrid vehicle incorporating fuel cell and battery degradation. International Journal of Hydrogen Energy, 44(16), 8479–8492. https://doi.org/10.1016/j.ijhydene.2019.02.003.

    Article  Google Scholar 

  26. Jain, M., Desai, C., & Williamson, S. S. Genetic algorithm based optimal powertrain component sizing and control strategy design for a fuel cell hybrid electric bus. In 2009 IEEE Vehicle Power and Propulsion Conference, 7–10 Sept. 2009 2009 (pp. 980–985). doi: 10.1109/VPPC.2009.5289740.

  27. Ma, K., Hu, S., Hu, G., Bai, Y., Yang, J., Dou, C., et al. (2019). Energy management considering unknown dynamics based on extremum seeking control and particle swarm optimization. In IEEE Transactions on Control Systems Technology, 1–9, doi: 10.1109/TCST.2019.2910158

  28. Fu, Z., Li, Z., Si, P., & Tao, F. (2019). A hierarchical energy management strategy for fuel cell/battery/supercapacitor hybrid electric vehicles. International Journal of Hydrogen Energy, 44(39), 22146–22159. https://doi.org/10.1016/j.ijhydene.2019.06.158.

    Article  Google Scholar 

  29. Bassam, A. M., Phillips, A. B., Turnock, S. R., & Wilson, P. A. (2016). An improved energy management strategy for a hybrid fuel cell/battery passenger vessel. International Journal of Hydrogen Energy, 41(47), 22453–22464. https://doi.org/10.1016/j.ijhydene.2016.08.049.

    Article  Google Scholar 

  30. Hou, J., Song, Z., Hofmann, H., & Sun, J. (2019). Adaptive model predictive control for hybrid energy storage energy management in all-electric ship microgrids. Energy Conversion and Management, 198, 111929. https://doi.org/10.1016/j.enconman.2019.111929.

    Article  Google Scholar 

  31. Liu, Y., Li, J., Chen, Z., Qin, D., & Zhang, Y. (2019). Research on a multi-objective hierarchical prediction energy management strategy for range extended fuel cell vehicles. Journal of Power Sources, 429, 55–66. https://doi.org/10.1016/j.jpowsour.2019.04.118.

    Article  Google Scholar 

  32. Rezaei, A., Burl, J. B., & Zhou, B. (2018). Estimation of the ECMS equivalent factor bounds for hybrid electric vehicles. IEEE Transactions on Control Systems Technology, 26(6), 2198–2205. https://doi.org/10.1109/TCST.2017.2740836.

    Article  Google Scholar 

  33. Muñoz, P. M., Correa, G., Gaudiano, M. E., & Fernández, D. (2017). Energy management control design for fuel cell hybrid electric vehicles using neural networks. International Journal of Hydrogen Energy, 42(48), 28932–28944. https://doi.org/10.1016/j.ijhydene.2017.09.169.

    Article  Google Scholar 

  34. Xie, S., Hu, X., Qi, S., & Lang, K. (2018). An artificial neural network-enhanced energy management strategy for plug-in hybrid electric vehicles. Energy, 163, 837–848. https://doi.org/10.1016/j.energy.2018.08.139.

    Article  Google Scholar 

  35. Li, Q., Chen, W., Li, Y., Liu, S., & Huang, J. (2012). Energy management strategy for fuel cell/battery/ultracapacitor hybrid vehicle based on fuzzy logic. International Journal of Electrical Power & Energy Systems, 43(1), 514–525. https://doi.org/10.1016/j.ijepes.2012.06.026.

    Article  Google Scholar 

  36. Erdinc, O., Vural, B., & Uzunoglu, M. (2009). A wavelet-fuzzy logic based energy management strategy for a fuel cell/battery/ultra-capacitor hybrid vehicular power system. Journal of Power Sources, 194(1), 369–380. https://doi.org/10.1016/j.jpowsour.2009.04.072.

    Article  Google Scholar 

  37. Mohebbi, M., Charkhgard, M., & Farrokhi, M. Optimal neuro-fuzzy control of parallel hybrid electric vehicles. In 2005 IEEE Vehicle Power and Propulsion Conference, 7–7 Sept. 2005 (pp. 26–30). https://doi.org/10.1109/VPPC.2005.1554566

  38. Wang, S., Huang, X., López, J. M., Xu, X., & Dong, P. (2019). Fuzzy adaptive-equivalent consumption minimization strategy for a parallel hybrid electric vehicle. IEEE Access, 7, 133290–133303. https://doi.org/10.1109/ACCESS.2019.2941399.

    Article  Google Scholar 

  39. Ahmadi, S., Bathaee, S. M. T., & Hosseinpour, A. H. (2018). Improving fuel economy and performance of a fuel-cell hybrid electric vehicle (fuel-cell, battery, and ultra-capacitor) using optimized energy management strategy. Energy Conversion and Management, 160, 74–84. https://doi.org/10.1016/j.enconman.2018.01.020.

    Article  Google Scholar 

  40. Hankache, W., Caux, S., Hissel, D., & Fadel, M. (2009). Genetic algorithm fuzzy logic energy management strategy for fuel cell hybrid vehicle. IFAC Proceedings Volumes, 42(9), 137–142. https://doi.org/10.3182/20090705-4-SF-2005.00026.

    Article  Google Scholar 

  41. Civicioglu, P. (2013). Backtracking search optimization algorithm for numerical optimization problems. Applied Mathematics and Computation, 219(15), 8121–8144. https://doi.org/10.1016/j.amc.2013.02.017.

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang, C., Zhou, J., Li, C., Fu, W., & Peng, T. (2017). A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting. Energy Conversion and Management, 143, 360–376. https://doi.org/10.1016/j.enconman.2017.04.007.

    Article  Google Scholar 

  43. Dinh, T. X., Luan, N. P., & Ahn, K. K. (2018). A novel inverse modeling control for piezo positioning stage. Journal of Mechanical Science and Technology, 32(12), 5875–5888. https://doi.org/10.1007/s12206-018-1136-2.

    Article  Google Scholar 

  44. Chen, D., Zou, F., Lu, R., & Li, S. (2019). Backtracking search optimization algorithm based on knowledge learning. Information Sciences, 473, 202–226. https://doi.org/10.1016/j.ins.2018.09.039.

    Article  MathSciNet  Google Scholar 

  45. Khan, W. U., Ye, Z., Chaudhary, N. I., & Raja, M. A. Z. (2018). Backtracking search integrated with sequential quadratic programming for nonlinear active noise control systems. Applied Soft Computing, 73, 666–683. https://doi.org/10.1016/j.asoc.2018.08.027.

    Article  Google Scholar 

  46. Zhao, W., Wang, L., Yin, Y., Wang, B., & Tang, Y. (2018). Sequential quadratic programming enhanced backtracking search algorithm. Frontiers of Computer Science, 12(2), 316–330. https://doi.org/10.1007/s11704-016-5556-9.

    Article  Google Scholar 

  47. Li, H., Pan, L., Chen, M., Chen, X., & Zhang, Y. RBM-based back propagation neural network with BSASA optimization for time series forecasting. In 2017 9th international conference on intelligent human-machine systems and cybernetics (IHMSC), 26–27 Aug. 2017 2017 (Vol. 2, pp. 218–221). doi: 10.1109/IHMSC.2017.163.

  48. Zhang, C., Li, C., Peng, T., Xia, X., Xue, X., Fu, W., et al. (2018). Modeling and synchronous optimization of pump turbine governing system using sparse robust least squares support vector machine and hybrid backtracking search algorithm. Energies, 11(11), doi: 10.3390/en11113108.

  49. Gill, P. E., & Wong, E. Sequential Quadratic Programming Methods. UCSD Department of Mathematics, Technical Report NA-10–03, 2010.

  50. Boggs, P. T., & Tolle, J. W. (1996). Sequential quadratic programming. Acta Numerica, 4, 1–51. https://doi.org/10.1017/s0962492900002518.

    Article  MathSciNet  MATH  Google Scholar 

  51. He, G., Liu, P., Guo, L., & Wang, K. (2014). Conicity error evaluation using sequential quadratic programming algorithm. Precision Engineering, 38(2), 330–336. https://doi.org/10.1016/j.precisioneng.2013.11.003.

    Article  Google Scholar 

  52. Zhang, J.-T., Zhu, H., Zhou, S.-Q., & Zhao, C.-S. (2012). Optimal design of a rod shape ultrasonic motor using sequential quadratic programming and finite element method. Finite Elements in Analysis and Design, 59, 11–17. https://doi.org/10.1016/j.finel.2012.04.011.

    Article  Google Scholar 

  53. Basu, M. (2013). Hybridization of bee colony optimization and sequential quadratic programming for dynamic economic dispatch. International Journal of Electrical Power & Energy Systems, 44(1), 591–596. https://doi.org/10.1016/j.ijepes.2012.08.026.

    Article  Google Scholar 

  54. Belloufi, A., Assas, M., & Rezgui, I. (2013). Optimization of turning operations by using a hybrid genetic algorithm with sequential quadratic programming. Journal of Applied Research and Technology, 11(1), 88–94. https://doi.org/10.1016/s1665-6423(13)71517-7.

    Article  Google Scholar 

  55. Eslami, M., Shareef, H., & Khajehzadeh, M. (2013). Optimal design of damping controllers using a new hybrid artificial bee colony algorithm. International Journal of Electrical Power & Energy Systems, 52, 42–54. https://doi.org/10.1016/j.ijepes.2013.03.012.

    Article  Google Scholar 

  56. Ben Hmida, J., Chambers, T., & Lee, J. (2019). Solving constrained optimal power flow with renewables using hybrid modified imperialist competitive algorithm and sequential quadratic programming. Electric Power Systems Research, 177, doi:10.1016/j.epsr.2019.105989

  57. Khan, M. J., & Iqbal, M. T. (2005). Modelling and analysis of electro-chemical, thermal, and reactant flow dynamics for a PEM fuel cell system. Fuel Cells, 5(4), 463–475. https://doi.org/10.1002/fuce.200400072.

    Article  Google Scholar 

  58. Sankar, K., Aguan, K., & Jana, A. K. (2019). A proton exchange membrane fuel cell with an airflow cooling system: dynamics, validation and nonlinear control. Energy Conversion and Management, 183, 230–240. https://doi.org/10.1016/j.enconman.2018.12.072.

    Article  Google Scholar 

  59. Yi, H.-S., & Cha, S. (2019). Optimal energy management of the electric excavator using super capacitor. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-019-00138-w.

    Article  Google Scholar 

  60. Kuperman, A., Mellincovsky, M., Lerman, C., Aharon, I., Reichbach, N., Geula, G., et al. (2014). Supercapacitor sizing based on desired power and energy performance. IEEE Transactions on Power Electronics, 29(10), 5399–5405. https://doi.org/10.1109/TPEL.2013.2292674.

    Article  Google Scholar 

  61. Lin, T., Chen, Q., Ren, H., Huang, W., Chen, Q., & Fu, S. (2017). Review of boom potential energy regeneration technology for hydraulic construction machinery. Renewable and Sustainable Energy Reviews, 79, 358–371. https://doi.org/10.1016/j.rser.2017.05.131.

    Article  Google Scholar 

  62. Zhang, X., Xie, Y., Jiang, L., Li, G., Meng, J., & Huang, Y. (2019). Fault-tolerant dynamic control of a four-wheel redundantly-actuated mobile robot. IEEE Access, 7, 157909–157921. https://doi.org/10.1109/access.2019.2949746.

    Article  Google Scholar 

  63. Zhang, R., & Tao, J. (2018). GA-based fuzzy energy management system for fc/sc-powered hev considering h<sub>2</sub>consumption and load variation. IEEE Transactions Fuzzy Systems, 26(4), 1833–1843. https://doi.org/10.1109/TFUZZ.2017.2779424.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT, South Korea (NRF 2020R1A2B5B03001480).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung Kwan Ahn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dao, H.V., To, X.D., Truong, H.V.A. et al. Optimization-Based Fuzzy Energy Management Strategy for PEM Fuel Cell/Battery/Supercapacitor Hybrid Construction Excavator. Int. J. of Precis. Eng. and Manuf.-Green Tech. 8, 1267–1285 (2021). https://doi.org/10.1007/s40684-020-00262-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-020-00262-y

Keywords

Navigation