Skip to main content
Log in

Osteogenic differentiation of mesenchymal stem cells on the bimodal polymer polyurethane/polyacrylonitrile containing cellulose phosphate nanowhisker

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Polycaprolactone diol is the cornerstone, equipped with polyacrylonitrile and cellulose nanowhiskers (CNWs), of biocompatible and biodegradable polyurethanes (PUs). The solvent casting/particulate leaching technique was employed to contracting foam scaffolds with bimodal sizes from the combination of polyurethane/polyacrylonitrile/cellulose nanowhisker nanocomposites. Sugar and sodium chloride are components used as porogens to develop the leaching method and fabricate the 3D scaffolds. Incorporation of different percentages of cellulose nanowhisker leads to the various efficient structures with biodegradability and biocompatibility properties. All nanocomposites scaffolds, as revealed by MTT assay using mesenchymal stem cell (MSC) lines, were non-cytotoxic. PU/PAN/CNW foam scaffolds were used for osteogenic differentiation of human mesenchymal stem cells (hMSCs). Based on the results, PU/PAN/CNW nanocomposites could not only support osteogenic differentiation but can also enhance the proliferation of hMSCs in three-dimensional synthetic extracellular matrix.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Balazs AC, Emrick T, Russell TP. Nanoparticle polymer composites: where two small worlds meet. Science. 2006;314(5802):1107–10.

    CAS  PubMed  Google Scholar 

  2. Tang E, Cheng G, Ma X. Preparation of nano-ZnO/PMMA composite particles via grafting of the copolymer onto the surface of zinc oxide nanoparticles. Powder Technol. 2006;161(3):209–14.

    CAS  Google Scholar 

  3. Cornejo A, Sahar DE, Stephenson SM, Chang S, Nguyen S, Guda T, et al. Effect of adipose tissue-derived osteogenic and endothelial cells on bone allograft osteogenesis and vascularization in critical-sized calvarial defects. Tissue Eng Part A. 2012;18(15–16):1552–61.

    CAS  PubMed  Google Scholar 

  4. Zhao C, Tan A, Pastorin G, Ho HK. Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering. Biotechnol Adv. 2013;31(5):654–68.

    PubMed  Google Scholar 

  5. Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002;295(5557):1014–7.

    CAS  PubMed  Google Scholar 

  6. Zohora FT, Azim AYMA. Biomaterials as porous scaffolds for tissue engineering applications: a review. Eur Sci J ESJ. 2014;10(21):215–27.

    Google Scholar 

  7. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS. Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 2011. https://doi.org/10.1155/2011/290602

  8. Zdrahala RJ, Zdrahala IJ. Biomedical applications of polyurethanes: a review of past promises, present realities, and a vibrant future. J Biomater Appl. 1999;14(1):67–90.

    CAS  PubMed  Google Scholar 

  9. Ganji Y, Li Q, Quabius ES, Böttner M, Selhuber-Unkel C, Kasra M. Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation. Mater Sci Eng C. 2016;59:10–8.

    CAS  Google Scholar 

  10. Khalil HA, Bhat A, Yusra AI. Green composites from sustainable cellulose nanofibrils: a review. Carbohyd Polym. 2012;87(2):963–79.

    Google Scholar 

  11. Eichhorn SJ. Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter. 2011;7(2):303–15.

    CAS  Google Scholar 

  12. Li B, Yoshii T, Hafeman AE, Nyman JS, Wenke JC, Guelcher SA. The effects of rhBMP-2 released from biodegradable polyurethane/microsphere composite scaffolds on new bone formation in rat femora. Biomaterials. 2009;30(35):6768–79.

    CAS  PubMed  Google Scholar 

  13. Weigel T, Schinkel G, Lendlein A. Design and preparation of polymeric scaffolds for tissue engineering. Expert Rev Med Devices. 2006;3(6):835–51.

    CAS  PubMed  Google Scholar 

  14. Ramakrishna S, Mayer J, Wintermantel E, Leong KW. Biomedical applications of polymer-composite materials: a review. Compos Sci Technol. 2001;61(9):1189–224.

    CAS  Google Scholar 

  15. Rezwan K, Chen Q, Blaker J, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413–31.

    CAS  PubMed  Google Scholar 

  16. Saïd Azizi Samir MA, Alloin F, Paillet M, Dufresne A. Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules. 2004;37(11):4313–6.

    Google Scholar 

  17. Liu M, Zheng H, Chen J, Li S, Huang J, Zhou C. Chitosan-chitin nanocrystal composite scaffolds for tissue engineering. Carbohyd Polym. 2016;152:832–40.

    CAS  Google Scholar 

  18. Siqueira G, Bras J, Dufresne A. Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers. 2010;2(4):728–65.

    CAS  Google Scholar 

  19. Godjevargova T, Dimov A. Permeability and protein adsorption of modified charged acrylonitrile copolymer membranes. J Membr Sci. 1992;67(2–3):283–7.

    Google Scholar 

  20. Wang Z-G, Wan L-S, Xu Z-K. Surface engineerings of polyacrylonitrile-based asymmetric membranes towards biomedical applications: an overview. J Membr Sci. 2007;304(1):8–23.

    CAS  Google Scholar 

  21. Saroja N, Shamala T, Tharanathan R. Biodegradation of starch-g-polyacrylonitrile, a packaging material, by Bacillus cereus. Process Biochem. 2000;36(1):119–25.

    CAS  Google Scholar 

  22. Shahrousvand M, Mir Mohamad Sadeghi G, Salimi A. Artificial extracellular matrix for biomedical applications: biocompatible and biodegradable poly (tetramethylene ether) glycol/poly (ε-caprolactone diol)-based polyurethanes. J Biomater Sci Polym Ed. 2016;27(17):1712–28.

    CAS  PubMed  Google Scholar 

  23. Norouz F, Halabian R, Salimi A, Ghollasi M. A new nanocomposite scaffold based on polyurethane and clay nanoplates for osteogenic differentiation of human mesenchymal stem cells in vitro. Mater Sci Eng C. 2019;103:109857.

    CAS  Google Scholar 

  24. Kucinska-Lipka J, Marzec M, Gubanska I, Janik H. Porosity and swelling properties of novel polyurethane–ascorbic acid scaffolds prepared by different procedures for potential use in bone tissue engineering. J Elastomers Plast. 2017;49(5):440–56.

    CAS  Google Scholar 

  25. Shahrousvand M, Hoseinian MS, Ghollasi M, Karbalaeimahdi A, Salimi A, Tabar FA. Flexible magnetic polyurethane/Fe 2 O 3 nanoparticles as organic-inorganic nanocomposites for biomedical applications: properties and cell behavior. Mater Sci Eng C. 2017;74:556–67.

    CAS  Google Scholar 

  26. Burg KJ, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials. 2000;21(23):2347–59.

    CAS  PubMed  Google Scholar 

  27. Lee M, Heo MH, Lee H-H, Kim Y-W, Shin J. Tunable softening and toughening of individualized cellulose nanofibers-polyurethane urea elastomer composites. Carbohyd Polym. 2017;159:125–35.

    CAS  Google Scholar 

  28. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26(27):5474–91.

    CAS  PubMed  Google Scholar 

  29. Grenier S, Sandig M, Mequanint K. Polyurethane biomaterials for fabricating 3D porous scaffolds and supporting vascular cells. J Biomed Mater Res Part A. 2007;82(4):802–9.

    Google Scholar 

  30. Shahrousvand M, Sadeghi GMM, Shahrousvand E, Ghollasi M, Salimi A. Superficial physicochemical properties of polyurethane biomaterials as osteogenic regulators in human mesenchymal stem cells fates. Colloids Surf B. 2017;156:292–304.

    CAS  Google Scholar 

  31. Cherian BM, Leão AL, de Souza SF, Costa LMM, de Olyveira GM, Kottaisamy M, et al. Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohyd Polym. 2011;86(4):1790–8.

    CAS  Google Scholar 

  32. Sabir MI, Xu X, Li L. A review on biodegradable polymeric materials for bone tissue engineering applications. J Mater Sci. 2009;44(21):5713–24.

    CAS  Google Scholar 

  33. Barrioni BR, de Carvalho SM, Oréfice RL, de Oliveira AAR, de Magalhães PM. Synthesis and characterization of biodegradable polyurethane films based on HDI with hydrolyzable crosslinked bonds and a homogeneous structure for biomedical applications. Mater Sci Eng C. 2015;52:22–30.

    CAS  Google Scholar 

  34. Anderson HC, Harmey D, Camacho NP, Garimella R, Sipe JB, Tague S, et al. Sustained osteomalacia of long bones despite major improvement in other hypophosphatasia-related mineral deficits in tissue nonspecific alkaline phosphatase/nucleotide pyrophosphatase phosphodiesterase 1 double-deficient mice. Am J Pathol. 2005;166(6):1711–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. McComb RB, Bowers GN Jr, Posen S. Alkaline phosphatase. Berlin: Springer; 2013.

    Google Scholar 

  36. Kim BS, Kim JS, Sung HM, You HK, Lee J. Cellular attachment and osteoblast differentiation of mesenchymal stem cells on natural cuttlefish bone. J Biomed Mater Res Part A. 2012;100(7):1673–9.

    Google Scholar 

  37. Whyte MP. Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization. Endocr Rev. 1994;15(4):439–61.

    CAS  PubMed  Google Scholar 

  38. Nam S, Jin Y-H, Li Q-L, Lee K-Y, Jeong G-B, Ito Y, et al. Expression pattern, regulation, and biological role of runt domain transcription factor, run, in Caenorhabditis elegans. Mol Cell Biol. 2002;22(2):547–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lynch MP, Stein JL, Stein GS, Lian JB. The influence of type I collagen on the development and maintenance of the osteoblast phenotype in primary and passaged rat calvarial osteoblasts: modification of expression of genes supporting cell growth, adhesion, and extracellular matrix mineralization. Exp Cell Res. 1995;216(1):35–45.

    CAS  PubMed  Google Scholar 

  40. Droscha CJ, Diegel CR, Ethen NJ, Burgers TA, McDonald MJ, Maupin KA, et al. Osteoblast-specific deletion of Hrpt2/Cdc73 results in high bone mass and increased bone turnover. Bone. 2017;98:68–78.

    CAS  PubMed  Google Scholar 

  41. Jahn K, Bonewald L. Bone cell biology: osteoclasts, osteoblasts, osteocytes. Pediatr Bone Biol Dis. 2012;5:43–71.

    Google Scholar 

  42. Dabbs DJ. Diagnostic Immunohistochemistry E-Book. Amsterdam: Elsevier; 2013.

    Google Scholar 

Download references

Acknowledgements

The cells used for experiments were kindly provided by Stem Cell Technology Research Center (Iran).

Funding

The work was not supported by any Department.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raheleh Halabian or Ali Salimi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padash, A., Halabian, R., Salimi, A. et al. Osteogenic differentiation of mesenchymal stem cells on the bimodal polymer polyurethane/polyacrylonitrile containing cellulose phosphate nanowhisker. Human Cell 34, 310–324 (2021). https://doi.org/10.1007/s13577-020-00449-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-020-00449-0

Keywords

Navigation