Skip to main content
Log in

Objective Evaluation of Fabric Wrinkles Based on 2-D Gabor Transform

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In order to establish an objective, stable and efficient wrinkle evaluation system for fabric wrinkle evaluation, a method based on 2-D Gabor transform was proposed. Among this system, the directions of Gabor filter were determined according to the range of amplitude response. Then a set of Gabor filters were obtained by selecting and optimizing the central frequency, the half peak bandwidth and the shape factor of the Gaussian surface. After Gabor transform by such filter bank, the amplitudes of different response spectrums were extracted, constructing a multi-dimensional feature vector. Finally, the feature vectors of the fabric image samples, whose wrinkle degrees were evaluated manually in advance, were extracted and used to train a support vector machine (SVM), which achieved 81.82 % evaluation accuracy on the 345 samples. The trained SVM was applied to evaluate the wrinkle degree of the fabric samples acquired in different illumination directions, and verified the stability of the proposed method to illumination environment. Compared with the existing method, the proposed method has higher classification accuracy. The comparison results indicate the Gabor amplitude feature proposed by this research has a high correlation with the fabric wrinkle grades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Choi, H. J. Kim, Y. C. Jin, and H. S. Kim, Fiber. Polym., 10, 260 (2009).

    Article  Google Scholar 

  2. AATCC Test Methods 124-2014, AATCC Technical Manual, 75, 219 (2015).

    Google Scholar 

  3. B. Xu and J. A. Reed, J. Text. Inst., 86, 129 (1995).

    Article  Google Scholar 

  4. Y. Na and B. Pourdeyhimi, Text. Res. J., 65, 149 (1995).

    Article  CAS  Google Scholar 

  5. T. Mori and J. Komiyama, Text. Res. J, 72, 417 (2002).

    Article  CAS  Google Scholar 

  6. T. J. Kang, D. H. Cho, and S. M. Kim, Text. Res. J., 71, 446 (2001).

    Article  CAS  Google Scholar 

  7. T. J. Kang and J. Y. Lee, Text. Res. J., 70, 469 (2000).

    Article  CAS  Google Scholar 

  8. T. J. Kang, S. C. Kim, I. H. Sul, J. R. Youn, and K. Chung, Text. Res. J., 75, 751 (2005).

    Article  CAS  Google Scholar 

  9. X. B. Yang, J. Northwest Inst. Text. Sci. Technol., 15, 20 (2001).

    Google Scholar 

  10. X. B. Yang and X. B. Huang, Text. Res. J., 73, 451 (2003).

    Article  CAS  Google Scholar 

  11. Z. Xia, R. Lv, and X. Sun, Multimed. Tools Appel., 77, 18187 (2018).

    Article  Google Scholar 

  12. Y. Li, H. Luo, M. Yu, G. Jiang, and H. Cong, J. Text. Inst., 110, 487 (2019).

    Article  Google Scholar 

  13. C. Li, Y. Huang, and L. Zhu, Pattern Recognit., 64, 118 (2017).

    Article  CAS  Google Scholar 

  14. M. R. Turner, Biol. Cybern, 55, 71 (1986).

    CAS  PubMed  Google Scholar 

  15. J. G. Daugman, J. Opt. Soc. Am. A., 2, 1160 (1986).

    Article  Google Scholar 

  16. L. Tong, W. K. Wong, and C. K. Kwong, Neurocomputing, 173, 1386 (2016).

    Article  Google Scholar 

  17. T. S. Lee, IEEE Trans. Pattern Anal. Mach. Intell., 18, 957 (1996).

    Article  Google Scholar 

  18. C. Cortes and V. Vapnik, Mach. Learn., 20, 273 (1995).

    Google Scholar 

  19. V. N. Vapnik, IEEE Trans. Neural Networks, 10, 988 (1999).

    Article  CAS  Google Scholar 

  20. C. C. Chung and C. J. Lin, ACM Trans. Intell. Syst. Technol., 2, 27 (2011).

    Google Scholar 

  21. H. C. Abril, E. Valencia, and M. S. Millan, AIP Conf. Proc., 992, 1045 (2008).

    Article  Google Scholar 

  22. H. C. Abril, M. S. Millan, and E. Valencia, J. Opt. A: Pure Appl. Opt., 10, 104030 (2008).

    Article  Google Scholar 

  23. J. Sun, M. Yao, B. Xu, and P. Bel, Text. Res. J., 81, 902 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Key R&D Program of China (Grant number 2017YFB0309200), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant number KYCX191878), the China Postdoctoral Science Foundation Funded Project (Grant number 2018M640453) and the Jiangsu Province Postdoctoral Science Foundation (Grant number 2018K037B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, K., Wang, J., Wang, L. et al. Objective Evaluation of Fabric Wrinkles Based on 2-D Gabor Transform. Fibers Polym 21, 2138–2146 (2020). https://doi.org/10.1007/s12221-020-9699-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9699-9

Keywords

Navigation