Skip to main content
Log in

Waste Jute Fabric as a Biosorbent for Heavy Metal Ions from Aqueous Solution

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The influence of the chemical composition on the biosorption potential of waste jute fabric for Ni2+, Cu2+, and Zn2+ was investigated. The raw jute fabric was treated with sodium hydroxide or sodium chlorite to selectively remove hemicelluloses and lignin, respectively. All jute fabrics were characterized by determination of their chemical composition as well as functional group content. The effects of solution pH, contact time, and initial metal ion concentration on the biosorption from monometallic and polymetallic solution by jute fabrics were investigated. The maximum biosorption capacity for all heavy metal ions was observed at pH 5.5. Concerning the contact time, the raw jute fabric shows more than 72 % of the total uptake capacity of Ni2+, Cu2+, and Zn2+ within 1 h, while the jute fabrics with lower hemicelluloses and lignin content show between 72–85 % of the total uptake capacity within 3 h. Increased initial metal ion concentration from 10 to 20 mg/l in monometallic solution caused an increase in the total uptake capacity of jute fabrics with lower hemicelluloses and lignin content for 47–69 % (Ni2+), 42–63 % (Cu2+), and 22–37 % (Zn2+). The biosorption capacity of alkali treated jute fabrics was affected by the changes in the total amount of carboxyl and aldehyde groups that accompany the hemicelluloses removal. In the case of the oxidative treatment, the biosorption capacity was affected by the lignin content as well as the amount of introduced carboxyl groups. The best biosorption performance possesses jute fabric with 63.2 % lower lignin content as well as 81.1 % higher amount of carboxyl groups; biosorption capacity toward Ni2+, Cu2+, and Zn2+ in monometallic solution is about 2.4; 2.2 and 3.5 times higher compared to the raw jute fabric, respectively. All jute fabrics exhibited the same affinity order (which is independent on the initial metal ion concentrations) toward heavy metal ions: Ni2+ > Cu2+ > Zn2+ in the case of competitive biosorption. An increase in the initial metal ion concentration for two times in the polymetallic solution caused about a 35–59 % increase in the total uptake capacity of Ni2+, while the total uptake capacities of Cu2+ and Zn2+ increased for 19–38 % and 18–65 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Crini, E. Lichtfouse, L. D. Wilson, and N. Morin-Crini, Environ. Chem. Lett., 17, 195 (2019).

    Article  CAS  Google Scholar 

  2. M. Vukcevic, B. Pejic, M. Lausevic, I. Pajic-Lijakovic, and M. Kostic, Fiber. Polym., 15, 687 (2014).

    Article  CAS  Google Scholar 

  3. A. B. Albadari, A. H. Al-Muhtasebb, N. A. Al-laqtaha, G. M. Walkera, S. J. Allena, and M. N. M. Ahmad, Chem. Eng. J., 169, 20 (2011).

    Article  CAS  Google Scholar 

  4. S. Loiacono, G. Crini, G. Chanet, M. Raschetti, V. Placet, and N. Morin-Crini, J. Chem. Technol. Biotechnol., 96, 2596 (2018).

    Google Scholar 

  5. N. Kim, M. Park, and D. Park, Bioresour. Technol., 175, 629 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. V. S. Trana, H. H. Ngo, W. Guo, J. Zhang, S. Liang, C. Ton-That, and X. Zhang, Bioresour. Technol., 182, 353 (2015).

    Article  CAS  Google Scholar 

  7. B. Abbara, A. Alem, S. Marcotte, A. Panteta, N. D. Ahfir, L. Bizeta, and D. Duriattic, Process Saf. Environ. Prot., 109, 639 (2017).

    Article  CAS  Google Scholar 

  8. W. N. L. dos Santos, D. D. Cavalcante, E. G. P. da Silva, C. F. das Virgens, and F. de Souza Dias, Microchem. J., 97, 269 (2011).

    Article  CAS  Google Scholar 

  9. C. M. Hasfalina, R. Z. Maryam, C. A. Luqman, and M. Rashid, APCBEE Procedia, 3, 255 (2012).

    Article  CAS  Google Scholar 

  10. M. O. Borna, M. Pirsaheb, M. V. Niri, R. K. Mashizie, B. Kakavandi, M. R. Zare, and A. Asadi, J. Taiwan. Inst. Chem. Eng., 68, 80 (2016).

    Article  CAS  Google Scholar 

  11. M. R. Razak, N. A. Jusof, M. J. Haron, N. Ibrahim, F. Mohhamed, S. Kamaruzaman, and H. A. Al-Lohedan, Int. J. Biol. Macromol., 112, 754 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. X. Peng, S. Su, M. Xia, K. Lou, F. Yang, S. Peng, and Y. Cia, Cellulose, 25, 1921 (2018).

    Article  CAS  Google Scholar 

  13. S. Xu, X. Gong, H. Zou, C. Liu, C. Chen, and X. Zeng, J. Chin. Chem. Soc. Taipei, 62, 1072 (2015).

    Article  Google Scholar 

  14. M. Kostic, B. Pejic, and M. Vukcevic in “Chemistry of lignocellulosic: Current Trends”, 1st ed. (T. Stefanovic Ed.), pp.3–21, CRC Press, Boca Raton, 2018.

  15. L. Tofan, C. Paduraru, C. Teodosiu, and O. Toma, Cellul. Chem. Technol., 49, 219 (2015).

    CAS  Google Scholar 

  16. S. Loiacono, G. Crini, B. Martel, G. Chanet, C. Cosentino, M. Raschetti, V. Placet, G. Torri, and N. Morin-Crini, J. Appl. Polym. Sci., 134, 45138 (2017).

    Article  CAS  Google Scholar 

  17. S. Loiacono, N. Morin-Crini, C. Cosentino, G. Torri, G. Chanet, P. Winterton, and G. Crini, J. Appl. Polym. Sci., 134, 44422 (2017).

    Google Scholar 

  18. J. Bugnet, N. Morin-Crini, C. Cosentino, G. Chanet, P. Winterton, and G. Crini, Environ. Eng. Manage. J., 16, 535 (2017).

    Article  CAS  Google Scholar 

  19. G. Z. Kyzas, Z. Terzopoulou, V. Nikolaidis, E. Alexopoulou, and D. N. Bikiaris, J. Mol. Liq., 209, 209 (2015).

    Article  CAS  Google Scholar 

  20. S. R. Shukla and R. S. Pai, Bioresour. Technol., 96, 1430 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Q. Huang, D. Hu, M. Chen, C. Bao, and X. Jin, J. Mol. Liq., 285, 288 (2019).

    Article  CAS  Google Scholar 

  22. M. S. Hassan and M. H. Zohdy, J. Vinyl Add.. Tech., 24, 339 (2018).

    Article  CAS  Google Scholar 

  23. M. S. Hassan and M. H. Zohdy, J. Nat. Fibers, 15, 506 (2018).

    Article  CAS  Google Scholar 

  24. Z. Du, T. Zheng, P. Wang, L. Hao, and Y. Wang, Bioresour. Technol., 21, 41 (2016).

    Article  CAS  Google Scholar 

  25. K. B. Krishnan, I. Doraiswamy, and K. P. Chellamani in “Bast and other Plant Fibers”, 1st ed. (R. R. Franck Ed.), pp.24–94, Woodhead Publishing Limited and CRC Press LCR, Cambridge, 2005.

  26. A. Ivanovska, D. Cerovic, S. Maletic, I. Jankovic Castvan, K. Asanovic, and M. Kostic, Cellulose, 26, 5133 (2019).

    Article  CAS  Google Scholar 

  27. J. Pérez, J. Muñoz-Dorado, T. de la Rubia, and J. Martínez, Int. Microbiol., 5, 53 (2002).

    Article  PubMed  CAS  Google Scholar 

  28. M. Kostic, B. Pejic, and P. Skundric, Bioresour. Technol., 99, 94 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. A. Koblyakov, “Laboratory Practice in the Study of Textile Materials”, 1st ed., pp.192–200, Mir Publishers, Moscow, 1989.

    Google Scholar 

  30. W. Garner, “Textile Laboratory Manual”, 1st ed., pp.52–113, Heywood Books, London, 1967.

    Google Scholar 

  31. J. Praskalo, M. Kostic, A. Potthast, G. Popova, B. Pejic, and P. Skundric, Carbohydr. Polym., 77, 791 (2009).

    Article  CAS  Google Scholar 

  32. B. D. Lazic, S. D. Janjic, T. Rijavec, and M. M. Kostic, J. Serb. Chem. Soc., 82, 83 (2017).

    Article  CAS  Google Scholar 

  33. P. K. Ganguly and S. Chanda, Indian J. Fiber. Text. Res., 19, 38 (1994).

    CAS  Google Scholar 

  34. A. A. Nada and M. L. Hassan, J. Appl. Polym. Sci., 102, 1399 (2006).

    Article  CAS  Google Scholar 

  35. B. Pejic, M. Vukcevic, M. Kostic, and P. Skundric, J. Hazard. Mater., 164, 46 (2009).

    Article  CAS  Google Scholar 

  36. D. Ray and B. K. Sarkar, J. Appl. Polym. Sci., 80, 1013 (2001).

    Article  CAS  Google Scholar 

  37. B. Pejic, M. Vukcevic, I. Pajic-Lijakovic, M. Lausevic, and M. Kostic, Chem. Eng. J., 172, 354 (2011).

    Article  CAS  Google Scholar 

  38. M. Balintova, M. Holub, N. Stevulova, J. Cigasova, and M. Tesarcikova, Chem. Eng. Transac., 39, 625 (2014).

    Google Scholar 

  39. J. He, T. Kunitake, and A. Nakao, Chem. Mater., 15, 4401 (2003).

    Article  CAS  Google Scholar 

  40. T. Saito and A. Isogai, Carbohydr. Polym., 61, 183 (2005).

    Article  CAS  Google Scholar 

  41. B. D. Lazić, B. M. Pejić, A. D. Kramar, M. M. Vukčević, K. R. Mihajlovski, R. D. Rusmirović, and M. M. Kostić, Cellulose, 25, 697 (2018).

    Article  CAS  Google Scholar 

  42. S. Ifuku, M. Tsuji, M. Morimoto, H. Saimoto, and H. Yano, Biomacromolecules, 10, 2714 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. M. Schwanninger, J. C. Rodrigues, H. Pereira, and B. Hinterstoisser, Vib. Spectrosc., 36, 23 (2004).

    Article  CAS  Google Scholar 

  44. M. K. B. Bakri, E. Jayamani, S. Hamdan S, Md. R. Rahman, and K. H. Soon, J. Eng. Appl. Sci., 11, 8759 (2016).

    Google Scholar 

  45. L. Y. Mwaikambo and M. P. Ansell, J. Appl. Polym. Sci., 84, 2222 (2002).

    Article  CAS  Google Scholar 

  46. H. Zhang H, R. Ming, G. Yang, Y. Li, Q. Li, and H. Shao, Polym. Eng. Sci., 55, 2553 (2015).

    Article  CAS  Google Scholar 

  47. D. Ahuja, A. Kaushik, and G. S. Chauha, Int. J. Biol. Macromol., 97, 403 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. S. K. Saw, R. Purwar, S. Nandy, J. Ghose, and G. Sarkhel, Bioresources, 8, 4805 (2013).

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Ministry of Education, Science and Technological Development of the Government of the Republic of Serbia (project OI 172029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ivanovska.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanovska, A., Dojcinovic, B., Maletic, S. et al. Waste Jute Fabric as a Biosorbent for Heavy Metal Ions from Aqueous Solution. Fibers Polym 21, 1992–2002 (2020). https://doi.org/10.1007/s12221-020-9639-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9639-8

Keywords

Navigation