Skip to main content
Log in

High-throughput Fabrication of Chitosan/Poly(ethylene oxide) Nanofibers by Modified Free Surface Electrospinning

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

It is very difficult to electrospin pure chitosan (CS) due to the repulsive forces between its ionic groups produced in the electrospinning process, resulting in the formation of nanofibers by blending CS with other natural or synthetic polymers for electrospinning. In this research work, a high-throughput fabrication of CS/poly(ethylene oxide) (PEO) nanofibers were obtained using a modified free surface electrospinning (MFSE), which contained a titanium solution reservoir with thick smooth edges. Effects of the concentrations of acetic acid (AA), CS and PEO on the conductivity and viscosity of spinning solutions as well as the morphology, crystallinity and yield of CS/PEO nanofibers were investigated. And the fabrication mechanism of MFSE was studied by simulating the electric field distribution using Maxwell 3D due to the importance of electric field distribution in the spinning process. The simulation results of electric field were in keeping with the experimental data and indicated the MFSE could produce a lot of high-quality CS/PEO nanofibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. K. Dhiman, A. R. Ray, and A. K. Panda, Biomaterials, 26, 979 (2005).

    Article  CAS  Google Scholar 

  2. P. K. Dutta S. Tripathi, G. K. Mehrotra, and J. Dutta, Food Chem., 114, 1173 (2009).

    Article  CAS  Google Scholar 

  3. A. Di Martino, M. Sittinger, and M. V. Risbud, Biomaterials, 26, 5983 (2005).

    Article  CAS  Google Scholar 

  4. T. Dai, M. Tanaka, Y. Y. Huang, and M. R. Hamblin, Expert Rev. Anti Infect. Ther., 9, 857 (2011).

    Article  CAS  Google Scholar 

  5. E. J. Lee, D. S. Shin, H. E. Kim, H. W. Kim, Y. H. Koh, and J. H. Jang, Biomaterials, 30, 743 (2009).

    Article  CAS  Google Scholar 

  6. N. Bhattarai, J. Gunn, and M. Zhang, Adv. Drug Deliv. Rev., 62, 83 (2010).

    Article  CAS  Google Scholar 

  7. P. Petkova, A. Francesko, M. M. Fernandes, E. Mendoza, I. Perelshtein, A. Gedanken, and T. Tzanov, ACS Appl. Mater. Interfaces, 6, 1164 (2014).

    Article  CAS  Google Scholar 

  8. D. Zeng, J. Wu, and J. F. Kennedy, Carbohydr. Polym., 71, 135 (2008).

    Article  CAS  Google Scholar 

  9. F. Croisier and C. Jérôme, Eur. Polym. J., 49, 780 (2013).

    Article  CAS  Google Scholar 

  10. L. A. M. van den Broek, R. J. I. Knoop, F. H. J. Kappen, and C. G. Boeriu, Carbohydr. Polym., 116, 237 (2015).

    Article  CAS  Google Scholar 

  11. W. S. W. Ngah, S. Ab Ghani, and A. Kamari, Bioresour. Technol., 96, 443 (2005).

    Article  Google Scholar 

  12. H. Y. Li and J. Birchall, Pharm. Res., 23, 941 (2006).

    Article  Google Scholar 

  13. M. Chávarri, I. Marañón, R. Ares, F. C. Ibáñez, F. Marzo, and M. del Carmen Villarán, Int. J. Food Microbiol., 142, 185 (2010).

    Article  Google Scholar 

  14. M. Z. Elsabee, H. F. Naguib, and R. E. Morsi, Mater. Sci. Eng. C., 32, 1711 (2012).

    Article  CAS  Google Scholar 

  15. S. Qasim, M. Zafar, S. Najeeb, Z. Khurshid, A. Shah, S. Husain, and I. Rehman, Int. J. Mol. Sci., 19, 407 (2018).

    Article  Google Scholar 

  16. A. Baji, Y. W. Mai, S. C. Wong, M. Abtahi, and P. Chen, Compos. Sci. Technol., 70, 703 (2010).

    Article  CAS  Google Scholar 

  17. X. Geng, O. H. Kwon, and J. Jang, Biomaterials, 26, 5427 (2005).

    Article  CAS  Google Scholar 

  18. P. Agrawal and K. Pramanik, J. Tissue. Eng. Regen. Med. 13, 485 (2016).

    Article  CAS  Google Scholar 

  19. A. Neamnark, R. Rujiravanit, and P. Supaphol, Carbohydr. Polym., 66, 298 (2006).

    Article  CAS  Google Scholar 

  20. M. Spasova, N. Manolova, D. Paneva, and I. Rashkov, e-Polymers, 4, 624 (2004).

    Article  Google Scholar 

  21. N. M Thoppey, J. R. Bochinski, L. I. Clarke, and R. E. Gorga, Nanotechnology, 22, 345301 (2011).

    Article  CAS  Google Scholar 

  22. A. E. Erickson, D. Edmondson, F. C. Chang, D. Wood, A. Gong, S. L. Levengood, and M. Zhang, Carbohydr. Polym., 134, 467 (2015).

    Article  CAS  Google Scholar 

  23. Y. T. Jia, J. Gong, X. H. Gu, H. Y. Kim, J. Dong, and X. Y. Shen, Carbohydr. Polym., 67, 403 (2007).

    Article  CAS  Google Scholar 

  24. C. Kriegel, K. M. Kit, D. J. McClements, and J. Weiss, Polymer, 50, 189 (2009).

    Article  CAS  Google Scholar 

  25. J. An, H. Zhang, J. Zhang, Y. Zhao, and X. Yuan, Colloid Polym. Sci., 287, 1425 (2009).

    Article  CAS  Google Scholar 

  26. Z. Shao, L. Yu, L. Xu, and M. Wang, Nanoscale Res. Lett., 12, 470 (2017).

    Article  Google Scholar 

  27. Y. Fang, L. Xu, and M. Wang, Nanomaterials, 8, 471 (2018).

    Article  Google Scholar 

  28. L. Xu, J. H. Zhao, and H. Liu, Therm. Sci., 19, 1255 (2015).

    Article  Google Scholar 

  29. V. Beachley and X. Wen, Mater. Sci. Eng. C., 29, 663 (2009).

    Article  CAS  Google Scholar 

  30. Y. Wu, L. Wang, J. Fan, W. Shou, and Y. Liu, Mater. Lett., 233, 359 (2019).

    Article  Google Scholar 

  31. N. Bhattarai, D. Edmondson, O. Veiseh, F. A. Matsen, and M. Zhang, Biomaterials, 26, 6176 (2005).

    Article  CAS  Google Scholar 

  32. M. T. M. Bizarria, M. A. d’Ávila, and L. H. I. Mei, Braz. J. Chem., 31, 57 (2014).

    Article  CAS  Google Scholar 

  33. J. Zhao, H. Liu, and L. Xu, Mater. Des., 90, 1 (2016).

    Article  CAS  Google Scholar 

  34. Y. Song, Z. Sun, L. Xu, and Z. Shao, Polymers, 9, 1 (2017).

    Article  CAS  Google Scholar 

  35. M. Sethupathy, V. Sethuraman, J. A. Raj, P. Muthuraja, and P. Manisankar, AIP Conf. Proc., 1620, 253 (2014).

    Article  CAS  Google Scholar 

  36. D. E. Hegazy and G. A. Mahmoud, Arab J. Nucl. Sci. Appl., 47, 1 (2014).

    Google Scholar 

  37. B. Son, B. Yeom, S. Song, C. Lee, and T. S. Hwang, J. Appl. Polym. Sci., 111, 2892 (2009).

    Article  CAS  Google Scholar 

  38. Y. Fang and L. Xu, Beilstein J. Nanotechnol., 10, 2261 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work is supported financially by National Natural Science Foundation of China (Grant Nos. 11672198 and 51675360), Six Talent Peaks Project of Jiangsu Province (Grant No.GDZB-050), Foundation project of Jiangsu Advanced Textile Engineering Technology Center (Grant No. XJFZ/2018/15), and PAPD (A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, A., Xu, L., Yin, J. et al. High-throughput Fabrication of Chitosan/Poly(ethylene oxide) Nanofibers by Modified Free Surface Electrospinning. Fibers Polym 21, 1945–1955 (2020). https://doi.org/10.1007/s12221-020-1109-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-1109-9

Keywords

Navigation