Skip to main content
Log in

A Novel and Inexpensive Method Based on Modified Ionic Gelation for pH-responsive Controlled Drug Release of Homogeneously Distributed Chitosan Nanoparticles with a High Encapsulation Efficiency

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Homogeneous chitosan nanoparticles utilizing EPR effect and pH-sensitive properties have an immense potential for loading and delivery of anticancer drugs. The aim of this study was preparing doxorubicin-loaded homogeneously distributed chitosan nanoparticles by using a simple and mild method, modified ionic gelation, with a very high encapsulation efficiency for controlled and pH-sensitive release. FESEM image revealed that the synthesized chitosan nanoparticles had a uniform spherical morphology with the size range 20–35 nm. The parameters of drug stirring duration, drug amount and nanoparticles formation time were changed to achieve maximum encapsulation efficiency as well as the effect of each parameter on the encapsulation efficiency was studied. The encapsulation efficiency toward doxorubicin under optimal conditions was 81.6±0.8 % (n=5±SD) that was higher than those previously published in literature. The investigations of doxorubicin release from chitosan nanoparticles in four media with different pH values showed a pH-sensitive release with a higher release rate in an acidic environment. The drug release mechanism at all pH values was also evaluated by zero-order, first-order, Higuchi and Korsmeyer-Peppas models. The most consistent model for release curve at four pHs was Korsmeyer-Peppas model. Therefore, we presented a method for the preparation of homogeneous doxorubicin-loaded chitosan nanoparticles with small size that can be industrialized because they were made based on a very simple and green method without the use of a complex system and expensive materials as well as due to their high encapsulation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Štular, M. Kruse, V. Župunski, L. Kreinest, J. Medved, T. Gries, A. Blaeser, I. Jerman, B. Simončič, and B. Tomšič, Fiber. Polym., 20, 1857 (2019).

    Article  CAS  Google Scholar 

  2. Y. Hao, J. Zhao, G. Wang, L. Cao, J. Wang, and F. Yue, Fiber. Polym., 18, 2476 (2017).

    Article  CAS  Google Scholar 

  3. B. K. Madathil, S. Sundaran, T. V. Kumary, A. Bhatt, and P. R. Anil Kumar, Fiber. Polym., 18, 2094 (2017).

    Article  CAS  Google Scholar 

  4. Y. Zare, H. Garmabi, and K. Y. Rhee, Compos. Part B-Eng., 144, 1 (2018).

    Article  CAS  Google Scholar 

  5. Y. Zare, Comput. Mater. Sci., 111, 334 (2016).

    Article  CAS  Google Scholar 

  6. Y. Zare and K. Y. Rhee, Compos. Sci. Technol., 155, 252 (2018).

    Article  CAS  Google Scholar 

  7. A. H. Z. Kalkhoran, O. Vahidi, and S. M. Naghib, Eur. J. Pharm. Sci., 111, 303 (2018).

    Article  CAS  Google Scholar 

  8. E. Askari, S. M. Naghib, A. Seyfoori, A. Maleki, and M. Rahmanian, Ultrason. Sonochem., 58, 104615 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. M. Rahmanian, S. Naghib, A. Seyfoori, A. Zare, K. Majidzadeh-A, and L. Farahmand, J. Ceram. Sci. Technol., 8, 505 (2017).

    Google Scholar 

  10. M. Rahmanian, M. M. Dehghan, L. Eini, S. M. Naghib, H. Gholami, S. Farzad, K. R. Mamaghani, and K. Majidzadeh-A, J. Taiwan Inst. Chem. Eng., 101, 214 (2019).

    Article  CAS  Google Scholar 

  11. A. Seyfoori, S. A. S. Ebrahimi, S. Omidian, and S. M. Naghib, J. Taiwan Inst. Chem. Eng., 96, 503 (2019).

    Article  CAS  Google Scholar 

  12. J. Saberi, M. Ansari, B. E. Hoseinzadeh, S. S. Kordestani, and S. M. Naghib, Fiber. Polym., 19, 2458 (2018).

    Article  CAS  Google Scholar 

  13. S. M. Naghib, M. Rabiee, and E. Omidinia, Int. J. Electrochem. Sci., 9, 2341 (2014).

    Google Scholar 

  14. S. Gooneh-Farahani, M. R. Naimi-Jamal, and S. M. Naghib, Expert Opin. Drug Deliv., 16, 79 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. S. Gooneh-Farahani, S. M. N. Naghib, and M. R. Naimi-Jamal, Multidiscip. Cancer Investig., 3, 5 (2019).

    Article  Google Scholar 

  16. S. A. Agnihotri, N. N. Mallikarjuna, and T. M. Aminabhavi, J. Control. Release, 100, 5 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. M. Dash, F. Chiellini, R. M. Ottenbrite, and E. Chiellini, Prog. Polym. Sci., 36, 981 (2011).

    Article  CAS  Google Scholar 

  18. C. C. Sipoli, N. Santana, A. A. M. Shimojo, A. Azzoni, and L. G. de la Torre, Biochem. Eng. J., 94, 65 (2015).

    Article  CAS  Google Scholar 

  19. R. Aydin and M. Pulat, J. Nanomater., 2012, 42 (2012).

    Google Scholar 

  20. M. Alkholief, J. Drug Deliv. Sci. Technol., 52, 204 (2019).

    Article  CAS  Google Scholar 

  21. W. Fan, W. Yan, Z. Xu, and H. Ni, Colloids Surf. B., 90, 21 (2012).

    Article  CAS  Google Scholar 

  22. K. A. Janes, M. P. Fresneau, A. Marazuela, A. Fabra, and M. a. J. Alonso, J. Control. Release, 73, 255 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. F. M. Kievit, F. Y. Wang, C. Fang, H. Mok, K. Wang, J. R. Silber, R. G. Ellenbogen, and M. Zhang, J. Control. Release, 152, 76 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. M. Guo, Y. Yan, X. Liu, H. Yan, K. Liu, H. Zhang, and Y. Cao, Nanoscale, 2, 434 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. X. Qi, L. Xiong, J. Peng, and D. Tang, RSC Adv., 7, 19604 (2017).

    Article  CAS  Google Scholar 

  26. S. Dash, P. N. Murthy, L. Nath, and P. Chowdhury, Acta Pol. Pharm., 67, 217 (2010).

    CAS  PubMed  Google Scholar 

  27. J. Siepmann and N. A. Peppas, Int. J. Pharm., 418, 6 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. R. W. Korsmeyer, R. Gurny, E. Doelker, P. Buri, and N. A. Peppas, Int. J. Pharm., 15, 25 (1983).

    Article  CAS  Google Scholar 

  29. Q. Yuan, J. Shah, S. Hein, and R. Misra, Acta Biomater., 6, 1140 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. J. Antoniou, F. Liu, H. Majeed, J. Qi, W. Yokoyama, and F. Zhong, Colloids Surf. A., 465, 137 (2015).

    Article  CAS  Google Scholar 

  31. S. A. Loutfy, H. M. A. El-Din, M. H. Elberry, N. G. Allam, M. Hasanin, and A. M. Abdellah, Adv. Nat. Sci.: Nanosci. Nanotechnol., 7, 035008 (2016).

    Google Scholar 

  32. M. R. de Moura, F. A. Aouada, R. J. Avena-Bustillos, T. H. McHugh, J. M. Krochta, and L. H. Mattoso, J. Food Eng., 92, 448 (2009).

    Article  CAS  Google Scholar 

  33. W. Yang, J. Fu, T. Wang, and N. He, J. Biomed. Nanotech., 5, 591 (2009).

    Article  CAS  Google Scholar 

  34. X. Zhao, Y. Yao, K. Tian, T. Zhou, X. Jia, J. Li, and P. Liu, Eur. J. Pharm. Biopharm., 108, 91 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. L. E. Scheeren, D. R. Nogueira, L. B. Macedo, M. P. Vinardell, M. Mitjans, M. R. Infante, and C. M. Rolim, Colloids Surf. B., 138, 117 (2016).

    Article  CAS  Google Scholar 

  36. M. A. Ghaz-Jahanian, F. Abbaspour-Aghdam, N. Anarjan, A. Berenjian, and H. Jafarizadeh-Malmiri, Mol. Biotechnol., 57, 201 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. M. Gaumet, A. Vargas, R. Gurny, and F. Delie, Eur. J. Pharm. Biopharm., 69, 1 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. J. A. Champion, Y. K. Katare, and S. Mitragotri, J. Control. Release, 121, 3 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Y. H. Bae and K. Park, J. Control. Release, 153, 198 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. L. Qi, Z. Xu, and M. Chen, Eur. J. Cancer, 43, 184 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. M. J. Masarudin, S. M. Cutts, B. J. Evison, D. R. Phillips, and P. J. Pigram, Nanotechnol. Sci. Appl., 8, 67 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. B.-L. Ye, R. Zheng, X.-J. Ruan, Z.-H. Zheng, and H.-J. Cai, Biochem. Biophys. Res. Commun., 495, 414 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. P. I. Soares, A. I. Sousa, J. C. Silva, I. M. Ferreira, C. M. Novo, and J. P. Borges, Carbohydr. Polym., 147, 304 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. S. Parveen and S. K. Sahoo, Cancer Nanotechnol., 1, 47 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. H. Song, C. Su, W. Cui, B. Zhu, L. Liu, Z. Chen, and L. Zhao, BioMed Res. Int., 2013, 723158 (2013).

    PubMed  PubMed Central  Google Scholar 

  46. X. Deng, M. Cao, J. Zhang, K. Hu, Z. Yin, Z. Zhou, X. Xiao, Y. Yang, W. Sheng, and Y. Wu, Biomaterials, 35, 4333 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Morteza Naghib.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gooneh-Farahani, S., Naghib, S.M. & Naimi-Jamal, M.R. A Novel and Inexpensive Method Based on Modified Ionic Gelation for pH-responsive Controlled Drug Release of Homogeneously Distributed Chitosan Nanoparticles with a High Encapsulation Efficiency. Fibers Polym 21, 1917–1926 (2020). https://doi.org/10.1007/s12221-020-1095-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-1095-y

Keywords

Navigation