Skip to main content

Advertisement

Log in

Cetuximab Exhibits Sex Differences in Lymphatic Exposure after Intravenous Administration in Rats in the Absence of Differences in Plasma Exposure

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The aim of this work was to identify whether biochemical and physiological sources of mAb pharmacokinetic sex-effects could be identified in the rat model where target-mediated disposition is avoided.

Methods

Plasma and lymphatic pharmacokinetics of the humanised anti-EGFR antibody cetuximab, along with potential physiological and biochemical drivers of pharmacokinetic sex differences, were examined in male and female rats. Cetuximab was used as a model mAb since plasma clearance is slower in female patients.

Results

When plasma concentrations were normalised to dose, female rats displayed slower plasma clearance than males, but no significant differences were observed in liver and spleen biodistribution. Sex differences in apparent plasma clearance, however, were abolished after normalisation to body weight, surface area or fat-free mass. Significant sex differences were observed in plasma testosterone, endogenous IgG and fat free mass, but did not correlate with apparent clearance. Females did, however, show two-fold higher lymphatic exposure compared to males.

Conclusions

These data suggested that mAbs more efficiently access lymph in females, but this does not affect plasma pharmacokinetics or biodistribution. Further, the data suggest that sex differences observed in humans could be a function of antigen density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EGFR:

Epidermal growth factor receptor

FcRn:

Neonatal Fc receptor

FcγR:

Fc gamma receptor

FFM:

Fat free mass

mAb:

Monoclonal antibody

MPS:

Mononuclear phagocyte system

TMDD:

Target mediated drug disposition

WCC:

Peripheral white blood cell count

References

  1. Abdiche YN, Yeung YA, Chaparro-Riggers J, Barman I, Strop P, Chin SM, et al. The neonatal fc receptor (FcRn) binds independently to both sites of the IgG homodimer with identical affinity. MAbs. 2015;7(2):331–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. André F, Ciccolini J, Spano J-P, Penault-Llorca F, Mounier N, Freyer G, et al. Personalized medicine in oncology: where have we come from and where are we going? Pharmacogenomics. 2013;14(8):931–9.

    PubMed  Google Scholar 

  3. Bird MD, Karavitis J, Kovacs EJ. Sex differences and estrogen modulation of the cellular immune response after injury. Cell Immunol. 2008;252(1–2):57–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Boer P. Estimated lean body mass as an index for normalization of body fluid volumes in humans. Am J Physiol-Renal Physiol. 1984;247(4):F632–6.

    CAS  Google Scholar 

  5. Centre for Drug Evaluation and Research. Clinical pharmacology and biopharmaceutics review(s): Erbitux STN/BLA 125084. 2004: 70.

  6. Chan LJ, Bulitta JB, Ascher DB, Haynes JM, McLeod VM, Porter CJ, et al. PEGylation does not significantly change the initial intravenous or subcutaneous pharmacokinetics or lymphatic exposure of trastuzumab in rats but increases plasma clearance after subcutaneous administration. Mol Pharm. 2015;12(3):794–809.

    CAS  PubMed  Google Scholar 

  7. Chan LJ, Ascher DB, Yadav R, Bulitta JB, Williams CC, Porter CJH, et al. Conjugation of 10 kDa linear PEG onto trastuzumab fab’ is sufficient to significantly enhance lymphatic exposure while preserving in vitro biological activity. Mol Pharm. 2016;13(4):1229–41.

    CAS  PubMed  Google Scholar 

  8. Chan LJ, Ascher DB, Yadav R, Bulitta JB, Williams CC, Porter CJ, et al. Conjugation of 10 kDa linear PEG onto trastuzumab Fab’ is sufficient to significantly enhance lymphatic exposure while preserving in vitro biological activity. Mol Pharmacol. 2016;13(4):1229–41.

    CAS  Google Scholar 

  9. Chao T-C, Phuangsab A, Van Alten PJ, Walter RJ. Steroid sex hormones and macrophage function: regulation of chemiluminescence and phagocytosis. Am J Reprod Immunol. 1996;35(2):106–13.

    CAS  PubMed  Google Scholar 

  10. Dahlberg AM, Kaminskas LM, Smith A, Nicolazzo JA, Porter CJH, Bulitta JB, et al. The lymphatic system plays a major role in the intravenous and subcutaneous pharmacokinetics of trastuzumab in rats. Mol Pharm. 2014;11(2):496–504.

    CAS  PubMed  Google Scholar 

  11. Datta-Mannan A, Lu J, Witcher DR, Leung D, Tang Y, Wroblewski VJ. The interplay of non-specific binding, target-mediated clearance and FcRn interactions on the pharmacokinetics of humanized antibodies. MAbs. 2015;7(6):1084–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Dirks NL, Nolting A, Kovar A, Meibohm B. Population pharmacokinetics of cetuximab in patients with squamous cell carcinoma of the head and neck. J Clin Pharmacol. 2008;48(3):267–78.

    CAS  PubMed  Google Scholar 

  13. EMEA. Erbitux-H-C-558-II-0005: EPAR – scientific discussion. 2004:47.

  14. Ezan E, Becher F, Fenaille F. Assessment of the metabolism of therapeutic proteins and antibodies. Expert Opin Drug Metab Toxicol. 2014;10(8):1079–91.

    CAS  PubMed  Google Scholar 

  15. Fakih M, Vincent M. Adverse events associated with anti-EGFR therapies for the treatment of metastatic colorectal cancer. Curr Oncol. 2010;17(Suppl 1):S18–30.

    PubMed  PubMed Central  Google Scholar 

  16. Fasanmade AA, Adedokun OJ, Ford J, Hernandez D, Johanns J, Hu C, et al. Population pharmacokinetic analysis of infliximab in patients with ulcerative colitis. Eur J Clin Pharmacol. 2009;65(12):1211–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gouma E, Simos Y, Verginadis I, Lykoudis E, Evangelou A, Karkabounas S. A simple procedure for estimation of total body surface area and determination of a new value of Meeh’s constant in rats. Lab Anim. 2012;46(1):40–5.

    CAS  PubMed  Google Scholar 

  18. Hansel TT, Kropshofer H, Singer T, Mitchell JA, George AJT. The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov. 2010;9:325–38.

    CAS  PubMed  Google Scholar 

  19. He X, Cruz JL, Joseph S, Pett N, Chew HY, Tuong ZK, et al. Characterization of 7A7, an anti-mouse EGFR monoclonal antibody proposed to be the mouse equivalent of cetuximab. Oncotarget. 2018;9(15):12250–60.

    PubMed  PubMed Central  Google Scholar 

  20. Hendrikx JJMA, Haanen JBAG, Voest EE, Schellens JHM, Huitema ADR, Beijnen JH. Fixed dosing of monoclonal antibodies in oncology. Oncologist. 2017;22(10):1212–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hoeben BAW, Molkenboer-Kuenen JDM, Oyen WJG, Peeters WJM, Kaanders JHAM, Bussink J, et al. Radiolabeled cetuximab: dose optimization for epidermal growth factor receptor imaging in a head-and-neck squamous cell carcinoma model. Int J Cancer. 2011;129(4):870–8.

    CAS  PubMed  Google Scholar 

  22. Jaber JJ, Zender CA, Mehta V, Davis K, Ferris RL, Lavertu P, et al. A multi-institutional investigation of the prognostic value of lymph nodal yield in advanced stage oral cavity squamous cell carcinoma (OCSCC). Head Neck. 2014;36(10):1446–52.

    PubMed  PubMed Central  Google Scholar 

  23. Jatoi A, Green EM, Rowland KM Jr, Sargent DJ, Alberts SR. Clinical predictors of severe cetuximab-induced rash: observations from 933 patients enrolled in north central cancer treatment group study N0147. Oncology. 2009;77(2):120–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kaminskas LM, Wu Z, Barlow N, Krippner GY, Boyd BJ, Porter CJ. Partly-PEGylated poly-L-lysine dendrimers have reduced plasma stability and circulation times compared with fully PEGylated dendrimers. J Pharm Sci. 2009;98(10):3871–5.

    CAS  PubMed  Google Scholar 

  25. Kaminskas LM, Kota J, McLeod VM, Kelly BD, Karellas P, Porter CJ. PEGylation of polylysine dendrimers improves absorption and lymphatic targeting following SC administration in rats. J Control Release. 2009;140(2):108–16.

    CAS  PubMed  Google Scholar 

  26. Kaminskas LM, Ascher DB, McLeod VM, Herold MJ, Le CP, Sloan EK, et al. PEGylation of interferon α2 improves lymphatic exposure after subcutaneous and intravenous administration and improves antitumour efficacy against lymphatic breast cancer metastases. J Control Release. 2013;168(2):200–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kaminskas LM, McLeod VM, Ascher DB, Ryan GM, Jones S, Haynes JM, et al. Methotrexate-conjugated PEGylated dendrimers show differential patterns of deposition and activity in tumor-burdened lymph nodes after intravenous and subcutaneous administration in rats. Mol Pharm. 2015;12(2):432–43.

    CAS  PubMed  Google Scholar 

  28. Kwon S, Agollah GD, Wu G, Sevick-Muraca EM. Spatio-temporal changes of lymphatic contractility and drainage patterns following lymphadenectomy in mice. PLoS One. 2014;9(8):e106034.

    PubMed  PubMed Central  Google Scholar 

  29. Lindenberger M, Länne T. Sex-related effects on venous compliance and capillary filtration in the lower limb. Am J Phys Regul Integr Comp Phys. 2007;292(2):R852–9.

    CAS  Google Scholar 

  30. Liu L. Pharmacokinetics of monoclonal antibodies and fc-fusion proteins. Protein Cell. 2018;9(1):15–32.

    CAS  PubMed  Google Scholar 

  31. Lu J-F, Bruno R, Eppler S, Novotny W, Lum B, Gaudreault J. Clinical pharmacokinetics of Bevacizumab in patients with solid tumors. Cancer Chemother Pharmacol. 2008;62(5):779–86.

    CAS  PubMed  Google Scholar 

  32. Ma P, Yang BB, Wang YM, Peterson M, Narayanan A, Sutjandra L, et al. Population pharmacokinetic analysis of panitumumab in patients with advanced solid tumors. J Clin Pharmacol. 2009;49(10):1142–56.

    CAS  PubMed  Google Scholar 

  33. Mould DR, Sweeney KRD. The pharmacokinetics and pharmacodynamics of monoclonal antibodies: mechanistic modeling applied to drug development. Curr Opin Drug Discov Dev. 2007;10(1):84–96.

    CAS  Google Scholar 

  34. Öztas B, Ćmurcu S, Kaya M. Influence of sex on the blood brain barrier permeability during bicuculline-induced seizures. Int J Neurosci. 1992;65(1–4):131–9.

    PubMed  Google Scholar 

  35. Pyzik M, Rath T, Lencer WI, Baker K, Blumberg RS. FcRn: the architect behind the immune and non-immune functions of IgG and albumin. J Immunol (Baltimore, Md: 1950). 2015;194(10):4595–603.

    CAS  Google Scholar 

  36. Ryman JT, Meibohm B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst Pharmacol. 2017;6(9):576–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Schmetzer O, Flörcken A. Sex differences in the drug therapy for oncologic diseases. In: Regitz-Zagrosek V, editor. Sex and gender differences in pharmacology. Berlin: Springer; 2012. p. 411–42.

    Google Scholar 

  38. Seitz K, Zhou G. Pharmacokinetic drug-drug interaction potentials for therapeutic monoclonal antibodies: reality check. J Clin Pharmacol. 2007;47(9):1104–18.

    CAS  PubMed  Google Scholar 

  39. Spitzer JA. Gender differences in some host defense mechanisms. Lupus. 1999;8(5):380–3.

    CAS  PubMed  Google Scholar 

  40. Terje Andersen J, Bekele Daba M, Berntzen G, Michaelsen TE, Sandlie I. Cross-species binding analyses of mouse and human neonatal fc receptor show dramatic differences in immunoglobulin G and albumin binding. J Biol Chem. 2010;285(7):4826–36.

    CAS  Google Scholar 

  41. Trevaskis NL, Kaminskas LM, Porter CJH. From sewer to saviour – targeting the lymphatic system to promote drug exposure and activity. Nat Rev Drug Discov. 2015;14:781–803.

    CAS  PubMed  Google Scholar 

  42. Trincot CE, Caron KM. Lymphatic function and dysfunction in the context of sex differences. ACS Pharmacol Transl Sci. 2019;2(5):311–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Varkhede N, Forrest L. Understanding the monoclonal antibody disposition after subcutaneous administration using a minimal physiologically based pharmacokinetic model. J Pharm Pharm Sci. 2018;21(1s):130s–48s.

    PubMed  PubMed Central  Google Scholar 

  44. Wang L, Subasic C, Minchin RF, Kaminskas LM. Drug formulation and nanomedicine approaches to targeting lymphatic cancer metastases. Nanomedicine. 2019;14(12):1605–21.

    CAS  PubMed  Google Scholar 

  45. Yadav P, McLeod VM, Nowell CJ, Selby LI, Johnston APR, Kaminskas LM, et al. Distribution of therapeutic proteins into thoracic lymph after intravenous administration is protein size-dependent and primarily occurs within the liver and mesentery. J Control Release. 2018;272:17–28.

    CAS  PubMed  Google Scholar 

  46. Yang J, Zhang L, Yu C, Yang X-F, Wang H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res. 2014;2:1.

    PubMed  PubMed Central  Google Scholar 

  47. Yip V, Palma E, Tesar DB, Mundo EE, Bumbaca D, Torres EK, et al. Quantitative cumulative biodistribution of antibodies in mice: effect of modulating binding affinity to the neonatal fc receptor. MAbs. 2014;6(3):689–96.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rodney F Minchin or Lisa M Kaminskas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 506 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuilamu, E., Subasic, C., Cowin, G.J. et al. Cetuximab Exhibits Sex Differences in Lymphatic Exposure after Intravenous Administration in Rats in the Absence of Differences in Plasma Exposure. Pharm Res 37, 224 (2020). https://doi.org/10.1007/s11095-020-02945-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02945-2

Key Words

Navigation