Skip to main content
Log in

Generation of Electric and Magnetic Fields during High-Intensity Laser Radiation Propagation through the Atmosphere

  • OPTICAL INSTRUMENTATION
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

An Erratum to this article was published on 01 November 2020

This article has been updated

Abstract—

Results are presented of the experimental study of electric and magnetic fields generated during pulsed laser radiation propagation along atmospheric paths in breakdown and prebreakdown modes. Generation of quasi-periodic electric and magnetic fields with a frequency of 105–106 Hz and duration of 10–100 μs during propagation of microsecond CO2 laser pulses through the atmosphere in these modes is ascertained. The maximum values of the induced electric and magnetic fields are observed when the number of breakdown centers per unit path length Nc = 0.17 m−1. The connection of electric and magnetic fields generated around the ionization channel with the atmospheric parameters is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Change history

  • 27 January 2021

    An Erratum to this paper has been published: https://doi.org/10.1134/S1024856020060263

REFERENCES

  1. V. V. Korobkin and R. V. Serov, “Investigation of the magnetic field of a spark produced by focusing laser radiation,” JETP Lett. 4 (3), 70–71 1966

    ADS  Google Scholar 

  2. G. A. Askar’yan, M. S. Rabinovich, A. D. Smirnova, and V. B. Studenoe, “Currents produced by light pressure when a laser beam acts on matter,” JETP Lett. 5 (4), 93–95 (1967).

    ADS  Google Scholar 

  3. J. A. Stamper and B. H. Ripin, “Faraday-Rotation measurements of megagauss magnetic fields in laser-produced plasmas,” Phys. Rev. Lett. 34 (3), 138–141 (1975).

    Article  ADS  Google Scholar 

  4. J. A. Stamper, E. A. McLean, and B. H. Ripin, “Studies of spontaneous magnetic fields in laser-produced plasmas by Faraday rotation,” Phys. Rev. Lett. 40 (18), 1177–1181 (1978).

    Article  ADS  Google Scholar 

  5. A. Raven, O. Willi, and P. T. Rumsby, “Megagauss magnetic fields profiles in laser-produced plasmas,” Phys. Rev. Lett. 41 (8), 554–557 (1978).

    Article  ADS  Google Scholar 

  6. M. Borghesi, A. J. Mackinnon, R. Gaillard, O. Willi, A. Pukhov, and J. Meyer-Ter-Vehn, “Large quasistatic magnetic fields generated by a relativistically intense laser pulse propagating in a preionized plasma,” Phys. Rev. Lett. 80 (23), 5137–5140 (1998).

    Article  ADS  Google Scholar 

  7. A. S. Sandhu, A. K. Dharmadhikari, P. P. Rajeev, G. R. Kumar, S. Sengupta, A. Das, and P. K. Kaw, “Laser-generated ultrashort multimegagauss magnetic pulses in plasmas,” Phys. Rev. Lett. 89 (22), 225002 (1–4) (2002).

  8. Y. Murakami, Y. Kitagawa, Y. Sentoku, M. Mori, R. Kodama, K. A. Tanaka, K. Mima, and T. Yamanaka, “Observation of proton rear emission and possible gigagauss scale magnetic fields from ultra-intense laser illuminated plastic target,” Phys. Plasmas 8 (9), 4138–4143 (2001).

    Article  ADS  Google Scholar 

  9. U. Wagner, M. Tatarakis, A. Gopal, F. N. Beg, E. L. Clark, A. E. Dangor, R. G. Evans, M. G. Haines, S. P. D. Mangles, P. A. Norreys, M.-S. Wei, M. Zepf, and K. Krushelnick, “Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas,” Phys. Rev. E: 70 (2), 026401(1–5) (2004).

  10. S. F. Balandin, V. A. Donchenko, Al. A. Zemlyanov, V. F. Myshkin, V. A. Khan, and E. S. Abramova, “Electrical parameters of a laser beam channel in the atmosphere. I,” Rus. Phys. J. 62 (4), 576–580 (2019).

    Article  Google Scholar 

  11. S. F. Balandin, V. A. Donchenko, Al. A. Zemlyanov, V. F. Myshkin, V. A. Khan, and E. S. Abramova, “Electrical parameters of a laser beam channel in the atmosphere. II,” Rus. Phys. J. 62 (5), 735–740 (2019).

    Article  Google Scholar 

  12. R. Jung, J. Osterholz, K. Lowenbruck, S. Kiselev, G. Pretzler, A. Pukhov, O. Willi, S. Kar, M. Borghesi, W. Nazarov, S. Karsch, R. Clarke, and D. Neely, “Study of electron-beam propagation through preionized dense foam plasmas,” Phys. Rev. Lett. 94 (19), 195001(1–4) (2005).

  13. Y. T. Li, M. H. Yuan, Z. Y. Zheng, Z. M. Sheng, M. Chen, Y. Y. Ma, W. X. Liang, Q. Z. Yu, Y. Zhang, F. Liu, Z. H. Wang, Z. Y. Wei, W. Zhao, Z. Jin, and J. Zhang, “Observation of a fast electron beam emitted along the surface of a target irradiated by intense femtosecond laser pulses,” Phys. Rev. Lett. 96 (16), 165003 (1–4) (2006).

  14. S. Ter-Avetisyan and P. V. Nikles, “Ion acceleration at the front and rear surfaces of thin foils with high-intensity 40-fs laser pulses,” JETP Lett. 83 (5), 206–210 (2006.

    Article  ADS  Google Scholar 

  15. G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78 (2), 309–371 (2006).

    Article  ADS  Google Scholar 

  16. V. A. Donchenko, S. F. Balandin, B. Zh. Kemel’bekov, V. F. Myshkin, and V. A. Khan, “Physical principles of creation of ionization channels in the atmosphere under CW and pulsed laser irradiation,” Rus. Phys. J. 61 (5), 918–929 (2018).

    Article  Google Scholar 

  17. A. L. Kuhl, D. A. White, and B. A. Kirkendall, “Electromagnetic waves from TNT Explosions,” J. Electromagn. Anal. Appl. 6 (10), 280–295 (2014).

    ADS  Google Scholar 

  18. D. M. Lubenko, V. E. Prokopev, S. V. Alekseev, M. V. Ivanov, and V. F. Losev, “Control of THz radiation divergence in laser filaments,” Atmos. Ocean. Opt. 32 (4), 430–433 (2019)

    Article  Google Scholar 

  19. H. Hamster, A. Sullivan, S. Gordon, and R. W. Falcone, “Short-pulse Terahertz radiation from high-intensity-laser produced plasmas,” Phys. Rev. E: 49 (1), 671–677 (1994).

    Article  ADS  Google Scholar 

  20. S. Tzortzakis, G. Mechain, G. Patalano, Y. Andre, B. Prade, M. Franco, and A. Mysyrowicz, “Coherent subterahertz radiation from femtosecond infrared filaments in air,” Opt. Lett. 27 (21), 1944–1946 (2002).

    Article  ADS  Google Scholar 

  21. G. Mechain, S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, and B. Leriche, “Calorimetric detection of THz radiation from femtosecond filaments in air,” Appl. Phys. B: Lasers Opt. 77 (8), 707–709 (2003).

    Article  ADS  Google Scholar 

  22. C. D. Amico, A. Houard, M. Franco, B. Prade, and A. Mysyrowicz, “Coherent and incoherent radial THz radiation emission from femtosecond filaments in air,” Opt. Express 15 (23), 15274–15279 (2007).

    Article  ADS  Google Scholar 

  23. S. G. Bezhanov and S. A. Uryupin, “Generation of nonlinear currents and low-frequency radiation upon interaction of a laser pulse with a metal,” Quantum Electron. 43 (11), 1048–1054 (2013).

    Article  ADS  Google Scholar 

  24. V. A. Mironov, I. V. Oladyshkin, and D. A. Fadeev, “Optical-to-THz Radiation Conversion On A Semi-Metal Surface,” Quantum Electron. 46 (8), 753–758 (2016).

    Article  ADS  Google Scholar 

  25. A. V. Korzhimanov, A. A. Gonoskov, E. A. Hazanov, and A. M. Sergeev, “Horizons of petawatt laser technology,” Phys.-Uspekhi. 54 (1), 9–28 (2011).

    Article  ADS  Google Scholar 

  26. S. F. Balandin, E. B. Belyaev, A. P. Godlevskij, Yu. D. Kopytin, and Yu. V. Ivanov, Study of Transport and Electrophysical Parameters of a Laser Spark Induced by SO 2 -Laser Pulses in Surface Air, Available from VINITI, No. 3430-84 (1984).

  27. Yu. E. Gejnts, A. A. Zemlyanov, V. E. Zuev, A. M. Kabanov, and V. A. Pogodaev, Nonlinear Optics of Atmospheric Aerosol (Publishing House of SB RAS, Novosibirsk, 1999) [in Russian].

    Google Scholar 

  28. V. A, Donchenko, M. V. Kabanov, and I. V. Samohvalov, Propagation of Optical Waves in Dispersion Media (NTL, Tomsk, 2014) [in Russian].

    Google Scholar 

  29. Atmosphere: Reference Book (Gidrometeoizdat, Leningrad, 1991) [in Russian].

  30. N. N. Krasikov, “Physico-chemical aspects of atmospheric electricity,” Dokl. Akad. Nauk SSSR 319 (2), 325–329 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Donchenko or V. A. Khan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myshkin, V.F., Balandin, S.F., Donchenko, V.A. et al. Generation of Electric and Magnetic Fields during High-Intensity Laser Radiation Propagation through the Atmosphere. Atmos Ocean Opt 33, 549–554 (2020). https://doi.org/10.1134/S1024856020050139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856020050139

Keywords:

Navigation