Skip to main content
Log in

Seasonal and Daily Variability of Aerosol Particle Concentrations near St. Petersburg

  • OPTICAL MODELS AND DATABASES
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

GRIMM aerosol spectrometer measurements of mass concentrations of PM1, PM2.5, and PM10 near St. Petersburg (Russia) in 2016–2018 are analyzed. The average concentrations of PM1, PM2.5, and PM10 over the measurement period are 4.5, 4.8, and 4.9 μg/m3, respectively. The hourly average PM10 concentrations are compared with the aerosol optical thickness at a wavelength of 500 nm (AOT) for different seasons. The correlation between the PM10 concentration and AOT is found to be the strongest in autumn. According to the distribution of the wind directions, the maximal PM10 concentrations correspond to the eastern winds (from St. Petersburg). The seasonal dependence of the daily variation in the mass concentration of PM10 on the relative air humidity and the height of the atmospheric boundary layer is analyzed. The PM10 concentrations (~8 μg/m3 on the average) and the amplitude of their daily variations are maximal in winter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. T. L. Anderson, R. J. Charlson, S. E. Schwartz, R. Knutti, O. Boucher, H. Rodhe, and J. Heintzenberg, “Climate forcing by aerosols—a hazy picture,” Science 300 (5622), 1103–1104 (2003).

    Article  Google Scholar 

  2. M. O. Andreae and P. Merlet, “Emission of trace gases and aerosols from biomass burning,” Glob. Biogeochem. Cycl. 15 (4), 955–966 (2001).

    Article  ADS  Google Scholar 

  3. A. S. Ginzburg, D. P. Gubanova, and V. M. Minashkin, “Influence of natural and anthropogenic aerosols on global and regional climate,” Rus. J. Gen. Chem. 79 (9), 2062–2070 (2009).

    Article  Google Scholar 

  4. K. Ya. Kondratyev and Al. A. Grigoryev, “Forest fires as a component of natural ecodynamics,” Atmos. Ocean. Opt. 17 (4), 245–255 (2004).

    Google Scholar 

  5. K. S. Carslaw, L. A. Lee, C. L. Reddington, K. J. Pringle, A. Rap, P. M. Forster, G. W. Mann, D. V. Spracklen, M. T. Woodhouse, L. A. Regayre, and J. R. Pierce, “Large contribution of natural aerosols to uncertainty in indirect forcing,” Nature 503 (7), 67–71 (2013).

    Article  ADS  Google Scholar 

  6. M. Hallquist, J. C. Wenger, U. Baltensperger, Y. Rudich, D. Simpson, M. Claeys, J. Dommen, N. M. Donahue, C. George, A. H. Goldstein, J. F. Hamilton, H. Herrmann, T. Hoffmann, Y. Iinuma, M. Jang, M. E. Jenkin, J. L. Jimenez, A. Kiendler-Scharr, W. Maenhaut, G. McFiggans, Th. F. Mentel, A. Monod, A. S. H. Prevot, J. H. Seinfeld, J. D. Surratt, R. Szmigielski, and J. Wildt, “the formation, properties and impact of secondary organic aerosol: current and emerging issues,” Atmos. Chem. Phys. 9 (1), 5155–5236 (2009).

    Article  ADS  Google Scholar 

  7. P. Stier, J. H. Seinfeld, S. Kinne, and O. Boucher, “Aerosol absorption and radiative forcing,” Atmos. Chem. Phys. 7 (19), 5237–5261 (2007).

    Article  ADS  Google Scholar 

  8. Plakhina I.N., Makhotkina E.L. Aerosol radiation forcing in the atmosphere. an overview of current data,” Uchenye Zapiski Ros. Gos. Gidrometeorol. Univ., No. 6, 20–37 (2008).

  9. K. Katsouyanni, G. Touloumi, E. Samoli, A. Gryparis, A. Le Tertre, Y. Monopolis, G. Rossi, D. Zmirou, F. Ballester, A. Boumghar, H. R. Anderson, B. Wojtyniak, A. Paldy, R. Braunstein, J. Pekkanen, C. Schindler, and J. Schwartz, “Confounding and effect modification in the short-term effects of ambient particles on total mortality: Results from 29 European cities within the APHEA2 project,” Epidemiology 12 (5), 521–531 (2001).

    Article  Google Scholar 

  10. F. Lu, D. Xu, Y. Cheng, S. Dong, C. Guo, and X. Jiang, “Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population,” Environ. Res. 136, 196–204 (2015).

    Article  Google Scholar 

  11. O. Yi, Y. C. Hong, and H. Kim, “Seasonal effect of PM10 concentrations on mortality and morbidity in Seoul, Korea: A temperature-matched case crossover analysis,” Environ. Res. 110, 89–95 (2010).

    Article  Google Scholar 

  12. O. D. Barteneva, N. I. Nikitinskaya, G. G. Sakunov, and L. K. Veselova, Transparency of Atmospheric Depth in the Visible and Near-IR (Gidrometeoizdat, Leningrad, 1991) [in Russian].

    Google Scholar 

  13. D. M. Kabanov, S. M. Sakerin, and S. A. Turchinovich, “Sun photometer for scientific monitoring (instrumentation, techniques, algorithms),” Atmos. Ocean. Opt. 14 (12), 1067–1074 (2001).

    Google Scholar 

  14. E. F. Mikhailov, G. N. Mironov, C. Pohlker, X. Chi, M. L. Kruger, M. Shiraiwa, J.-D. Forster, U. Poschl, S.  S. Vlasenko, T. I. Ryshkevich, M. Weigand, A. L. D. Kilcoyne, and M. O. Andreae, “Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign,” Atmos. Chem. Phys. 15, 8847–8869 (2015). https://doi.org/10.5194/acp15-8847-2015

    Article  ADS  Google Scholar 

  15. N. Y. Chubarova, “Seasonal distribution of aerosol properties over Europe and their impact on UV irradiance,” Atmos. Meas. Tech. 2, 593–608 (2009).

    Article  Google Scholar 

  16. V. A. Poddubnyi, S. M. Sakerin, A. P. Luzhetskaya, E. S. Nagovitsyna, S. A. Beresnev, and Yu. I. Markelov, “Study of atmospheric aerosol at the Middle Urals by spectral solar photometry techniques,” Vestn. Ural. Otdel. Rus. Akad. Nauk 2 (44), 37–53 (2013).

    Google Scholar 

  17. S. M. Sakerin, S. A. Beresnev, D. M. Kabanov, G. I. Kornienko, S. V. Nikolashkin, V. A. Poddubny, M. A. Tashchilin, Yu. S. Turchinovich, B. N. Holben, and A. Smirnov, “Analysis of approaches to modeling the annual and spectral behaviors of atmospheric aerosol optical depth in Siberia and Primorye,” Atmos. Ocean. Opt. 28 (2), 145–157 (2015).

    Article  Google Scholar 

  18. A. Smirnov, B. N. Holben, A. Lyapustin, I. Slutsker, and T. F. Eck, “AERONET processing algorithms refinement,” in AERONET Workshop, May, 10–14, 2004, El Arenosillo, Spain (2014).

  19. D. P. Gubanova, I. B. Belikov, N. F. Elansky, A. I. Skorokhod, and N. E. Chubarova, “Variations in PM2.5 surface concentration in Moscow according to observations at MSU meteorological observatory,” Atmos. Ocean. Opt. 31 (3), 290–299 (2018).

    Article  Google Scholar 

  20. Xin Jinyuan, Gong Chongshui, Liu Zirui, Cong Zhiyuan, Gao Wenkang, Song Tao, Pan Yuepeng, Sun Yang, Ji Dongsheng, Wang Lili, Tang Guiqian, and Wang Yuesi, “The observation-based relationships between PM2.5 and AOD over China,” J. Geophys. Res. 121 (18), 10701–10716 (2016).

    Article  Google Scholar 

  21. C. Zheng, C. Zhao, Y. Zhu, Y. Wang, X. Shi, X. Wu, T. Chen, F. Wu, and Y. Qiu, “Analysis of influential factors for the relationship between PM (2.5) AOD in Beijing,” Atmos. Chem. Phys. 17 (21), 13473–13489 (2017). https://doi.org/10.5194/acp-17-13473-2017

    Article  ADS  Google Scholar 

  22. L. S. Ivlev and Yu. A. Dovgalyuk, Physics of Atmospheric Aerosol Systems (Institute of Chemistry, St.-Petersburg State University, St. Petersburg, 1999) [in Russian].

    Google Scholar 

  23. http://www.infoeco.ru. Cited December 4, 2019.

  24. Report about Ecological Situation in St. Petersburg in 2017, Ed. by I.A. Serebritskii (Sezam-print, St. Petersburg, 2018) [in Russian].

    Google Scholar 

  25. K. A. Volkova, A. V. Poberovsky, Yu. M. Timofeev, D. V. Ionov, B. N. Holben, A. Smirnov, and I. Slutsker, “Aerosol optical characteristics retrieved from CIMEL sun photometer measurements (AERONET) near St. Petersburg,” Atmos. Ocean. Opt. 31 (6), 635–641 (2018).

    Article  Google Scholar 

  26. M. E. Birch and R. A. Cary, “Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust,” Aerosp. Sci. Technol. 25 (3), 221–241 (1996).

    Article  ADS  Google Scholar 

  27. S. S. Vlasenko, K. A. Volkova, D. V. Ionov, T. I. Ryshkevich, O. A. Ivanova, and E. F. Mikhailov, “Variation of carboneceous atmospheric aerosol near St. Petersburg,” Izv. Atmos. Ocean. Phys. 55 (6), 619–627 (2019).

    Article  Google Scholar 

  28. B. N. Holben, T. I. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vemote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66 (1), 1–16 (1998).

    Article  ADS  Google Scholar 

  29. O. Dubovik and M. D. King, “A flexible Inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements,” J. Geophys. Res. D 105, 20673–20696 (2000).

    Article  ADS  Google Scholar 

  30. A. Smirnov, B. N. Holben, T. F. Eck, O. Dubovik, and I. Slutsker, “Cloud-screening and quality control algorithms for the AERONET database,” Remote Sens. Environ. 73, 337–349 (2000).

    Article  ADS  Google Scholar 

  31. D. Giles, B. N. Holben, A. Smirnov, T. F. Eck, I. Slutsker, M. Sorokin, J. Schafer, and A. Sinyuk, “Evaluation of AERONET AOD measurements in the Version 3 database,” in 10th Ann.Yoram Kaufman Memorial Sympos. 2016.

    Google Scholar 

  32. G. L. Schuster, O. Dubovik, and B. N. Holben, “Angstrom exponent and bimodal aerosol size distributions,” J. Geophys. Res. 111, D07207 (2006).

    ADS  Google Scholar 

  33. O. Dubovik, A. Smirnov, B. Holben, M. King, Y. Kaufman, T. Eck, and I. Slutsker, “Accuracy assessments of aerosol optical properties retrieved from Aerosol Robostic Network (AERONET) sun and sky radiance measurements,” J. Geophys. Res. D 105 (8), 9791–9806 (2000).

    Article  ADS  Google Scholar 

  34. D. V. Ionov and A. V. Poberovskij, “Variability of nitrogen oxide concentrations in the surface air layer from observation data in Peterhof,” Rus. Meteorol. Hydrol. (in print).

  35. I. N. Kuznetsova, A. A. Glazkova, I. YU. Shalygina, M. I. Nahaev, A. A. Arhangel’skaya, A. M. Zvyagintsev, E. G. Semutnikova, P. V. Zaharova, and E. A. Lezina, “Seasonal and diurnal variability of particulate matter PM10 in surface air of Moscow habitable districts,” Opt. Atmos. Okeana 27 (6), 473–482 (2014).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The AERONET data are used in the work. We are grateful to A.V. Poberovskii for organization and performance of these measurements in Peterhof.

Funding

The work was supported by the Russian Science Foundation (grant no. 18-17-00076) and the Geo Environmental Research Center Geomodel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Volkova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkova, K.A., Anikin, S.S., Mihailov, E.F. et al. Seasonal and Daily Variability of Aerosol Particle Concentrations near St. Petersburg. Atmos Ocean Opt 33, 524–530 (2020). https://doi.org/10.1134/S102485602005019X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102485602005019X

Keywords:

Navigation