Skip to main content
Log in

Evaluation of Thermal and Acoustic Energy during Collapse of Cavitation Bubbles

  • MECHANICS OF MACHINES
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

The results of a numerical study of the thermal and acoustic energies released during the collapse of a single spherical cavitation bubble in water at a pressure of 10 bar and a temperature of 20°С are given. In the model used, we take into account the thermal conductivity of the vapor in the bubble and the surrounding liquid, heat transfer, evaporation/condensation on the surface of the bubble, and the fluid compressibility. The conversion of mechanical energy into heat due to the fluid viscosity is not accounted for. When the bubble collapses, the energy of acoustic radiation due to radial pulsations of the bubble is shown to be approximately nine times greater than the energy spent on heating the liquid. The value of this energy is proportional to the cube of the initial bubble radius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Wu, C.C. and Roberts, P.H., A model of sonoluminescence, Proc. R. Soc. London A, 1994, vol. 445, p. 323.

    Article  Google Scholar 

  2. Moss, W.C., Clarke, D.B., and Young, D.A., Calculated pulse widths and spectra of a single sonoluminescencing bubble, Science, 1997, vol. 276, p. 1398.

    Article  Google Scholar 

  3. Gaitan, D.F., Crum, L.A., Roy, R.A., and Church, C.C., Sonoluminescence and bubble dynamics for a single, stable cavitation bubble, J. Acoust. Soc. Am., 1992, vol. 91, p. 3166.

    Article  Google Scholar 

  4. Lord Rayleigh, On the pressure developed in a liquid during the collapse of a spherical cavity, Philos. Mag., 1917, vol. 34, no. 200, p. 94.

    Article  Google Scholar 

  5. Akhatov, I., Linday, O., Topolnikov, A., Mettin, R., Vakhitova, N., and Lauterborn, W., Collapse and rebound of a laser-induced cavitation bubble, Phys. Fluids, 2001, vol. 13, no. 10, p. 2805.

    Article  Google Scholar 

  6. Voinov, O.V. and Voinov, V.V., On the scheme of collapse of a cavitation bubble near the wall and the formation of a cumulative jet, Dokl. Akad. Nauk SSSR, 1976, vol. 227, no. 1, p. 63.

    Google Scholar 

  7. Pearsall, I.S., Cavitation, London: Mills and Boon Limited, 1972.

    Google Scholar 

  8. Brennen, C.E., Hydrodynamics of Pumps, Oxford: Oxford Univ. Press, 1994.

    MATH  Google Scholar 

  9. Harrison, M., An experimental study of single bubble cavitation noise, J. Acoust. Soc. Am., 1982, vol. 24, no. 6, p. 776.

    Article  Google Scholar 

  10. Philipp, A. and Lauterborn, W., Cavitation erosion by single laser-produced bubbles, J. Fluid Mech., 1998, vol. 361, pp. 75–116.

    Article  Google Scholar 

  11. Kieser, B., Phillion, R., Smith, S., and McCartney, T., The application of industrial scale ultrasonic cleaning to heat exchangers, Proceedings of International Conference on Heat Exchanger Fouling and Cleaning, 2011, p. 336.

  12. Ganiev, R.F. and Ukrainskii, L.E., Nelineinaya volnovaya mekhanika i tekhnologii. Volnovye i kolebatel’nye yavleniya v osnove vysokikh tekhnologii (Nonlinear Wave Mechanics and Technology. Wave and Vibrational Phenomena for Advanced Technologies), Moscow: Inst. Komp. Issled., Regulyarn. Khaotichn. Din., 2011, 2nd ed.

  13. Britvin, L.N., Cavitation-vortex type heat generator, RU Patent 99110397/06, 2001.

  14. Biryuk, V.V., Serebryakov, R.A., and Dostovalova, S.S., Vortex hydraulic heat generator with improved characteristics, Izv. Samar. S-kh. Akad., 2015, no. 3, p. 70.

  15. Nigmatulin, R.I., Akhatov, I.Sh., Topolnikov, A.S., Bolotnova, R.Kh., Vakhitova, N.K., Lahey, R.T., Jr., and Taleyarkhan, R.P., The theory of supercompression of vapor bubbles and nano-scale thermonuclear fusion, Phys. Fluid, 2005, vol. 17, p. 107.

    Article  Google Scholar 

  16. Hairer, E., Nørsett, S.P., and Wanner, G, Solving Ordinary Differential Equations I. Nonstiff Problems, Berlin–Heidelberg: Springer, 1993.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Davletshin.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by G. Dedkov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aganin, A.A., Ganiev, O.R., Davletshin, A.I. et al. Evaluation of Thermal and Acoustic Energy during Collapse of Cavitation Bubbles. J. Mach. Manuf. Reliab. 49, 367–373 (2020). https://doi.org/10.3103/S1052618820050027

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1052618820050027

Keywords:

Navigation