Skip to main content
Log in

Mechanical and Tribological Properties of Fe−Cu−Ni−Sn Materials with Different Amounts of CrB2 Used as Matrices for Diamond-Containing Composites

  • PRODUCTION, STRUCTURE, PROPERTIES
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

The effect of the addition of CrB2 in the amount of 0 to 8 wt % on the microstructure, microhardness, elastic modulus, friction coefficient, and wear resistance of the Fe–Cu–Ni–Sn composites formed by cold pressing and subsequent sintering with hot pressing is investigated. It is found that an increase in the content of CrB2 in the composition of the composite material is accompanied by an increase in its hardness and elastic modulus. The coefficient of friction and the wear rating, as well as the H/E and H3/E2 parameters—which describe the resistances of a material to the elastic fracture deformation and to plastic deformation, respectively—decrease with an increase in the content of CrB2 to 2 wt % and increase with an increase in the content of the additive. A substantial increase in the wear resistance of the sample containing 2 wt % of CrB2 compared to the initial sample is caused by the formation of fine-grained microstructure and by the optimal combination of hardness and elastic modulus values. Tribological tests of sintered samples on pin-on-disc and Calo testers indicate substantial improvement of functional properties of the developed composite containing 2 wt % of CrB2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 6.

Similar content being viewed by others

Notes

  1. Hereinafter, the composition of the composite is given in wt %.

REFERENCES

  1. Zaitsev, A.A., Sidorenko, D.A., Levashov, E.A., Kurbatkina, V.V., Rupasov, S I., Andreev, V.A., and Sevast’yanov, P.V., Development and application of the Cu–Ni–Fe–Sn based dispersion hardened bond for cutting tools of superhard materials, J. Superhard Mater., 2012, vol. 34, no. 4, pp. 270–280.

    Article  Google Scholar 

  2. Mechnyk, V.A., Diamond–Fe–Cu–Ni–Sn composite materials with predictable stable characteristics, Mater. Sci., 2013, vol. 48, no. 5, pp. 591–600.

    Article  CAS  Google Scholar 

  3. Gevorkyan, E., Mechnik, V., Bondarenko, N., Vovk, R., Lytovchenko, S., Chishkala, V., and Melnik, O., Peculiarities of obtaining diamond–(Fe–Cu–Ni–Sn) hot pressing, Funct. Mater., 2017, vol. 24, pp. 31–45.

    Article  CAS  Google Scholar 

  4. Konstanty, J., Powder Metallurgy Diamond Tools, Amsterdam: Elsevier, 2005.

    Google Scholar 

  5. Mechnik, V.A., Bondarenko, N.A., Kuzin, N.O., and Lyashenko, B.A., The role of structure formation in forming the physicomechanical properties of composites of the diamond–(Fe–Cu–Ni–Sn) system, J. Frict. Wear, 2016, vol. 37, no. 4, pp. 377–384.

    Article  Google Scholar 

  6. Nitkiewicz, Z. and Swierzy, M., Tin influence on diamond-metal matrix hot pressed tools for stone cutting, J. Mater. Process. Technol., 2006, vol. 175, nos. 1–3, pp. 306–315.

    Article  CAS  Google Scholar 

  7. Mechnik, V.A., Bondarenko, N.A., Kuzin, N.O., and Gevorkian, E.S., Influence of the addition of vanadium nitride on the structure and specifications of a diamond–(Fe–Cu–Ni–Sn) composite system, J. Frict. Wear, 2018, vol. 39, no. 2, pp. 108–113.

    Article  Google Scholar 

  8. Dinaharan, I., Sathiskumar, R., and Murugan, N., Effect of ceramic particulate type on microstructure and properties of copper matrix composites synthesized by friction stir processing, J. Mater. Res. Technol., 2016, vol. 5, no. 4, pp. 302–316.

    Article  CAS  Google Scholar 

  9. Shabani, M., Paydar, M.H., Zamiri, R., Goodarzi, M., and Moshksar, M.M., Microstructural and sliding wear behavior of SiC-particle reinforced copper matrix composites fabricated by sintering and sinter-forging processes, J. Mater. Res. Technol., 2016, vol. 5, no. 1, pp. 5–12.

    Article  CAS  Google Scholar 

  10. Hodge, A.M., Wang, Y.M., and Barbee, T.W., Large-scale production of nano-twinned, ultrafine-grained copper, Mater. Sci. Eng., A, 2006, vol. 429, nos. 1–2, pp. 272–276.

    Article  CAS  Google Scholar 

  11. Shaw, L.L., Villegas, J., Huang, J.-Y., and Chen, S., Strengthening via deformation twinning in a nickel alloy, Mater. Sci. Eng., A, 2008, vol. 480, nos. 1–2, pp. 75–83.

    Article  CAS  Google Scholar 

  12. Aleksandrov, V.A., Akekseenko, N.A., and Mechnik, V.A., Study of force and energy parameters in cutting granite with diamond disc saws, Sov.J. Superhard Mater., 1984, vol. 6, no. 6, pp. 46–52.

    Google Scholar 

  13. Zhukovskii, A.N., Maistrenko, A.L., Mechnik, V.A., and Bondarenko, N.A., The stress-strain state of the bonding around the diamond grain exposed to normal and tangent loading components. Part 1. Model, Trenie Iznos, 2002, vol. 23, no. 2, pp. 146–153.

    Google Scholar 

  14. Zhukovskii, A.N., Maistrenko, A.L., Mechnik, V.A., and Bondarenko, N.A., Stress-strain state of the matrix around the diamond grain exposed to the normal and tangent loading components. Part 2. Analysis, Trenie Iznos, 2002, vol. 23, no. 4, pp. 393–396.

    CAS  Google Scholar 

  15. Aleksandrov, V.A., Zhukovskii, A.N., and Mechnik, V.A., Temperature field and wear of inhomogeneous diamond wheel at convective heat exchange, Trenie Iznos, 1994, vol. 15, no. 1, pp. 27–35.

    Google Scholar 

  16. Aleksandrov, V.A., Zhukovskii, A.N., and Mechnik, V.A., Temperature field and wear of heterogeneous diamond wheel under conditions of convectional heat transfer. Part 2, Trenie Iznos, 1994, vol. 15, no. 2, pp. 196–201.

    Google Scholar 

  17. Dutka, V.A., Kolodnitskij, V.M., Zabolotnyi, S.D., Sveshnikov, I.A., and Lukash, V.A., Simulation of the temperature level in rock destruction elements of drilling bits, Sverkhtverd. Mater., 2004, no. 2, pp. 66–73.

  18. Dutka, V.A., Kolodnitskij, V.M., Mel’nichuk, O.V., and Zabolotnyi, S.D., Mathematical model for thermal processes occurring in the interaction between rock destruction elements of drilling bits and rock mass, Sverkhtverd. Mater., 2005, no. 1, pp. 67–77.

  19. Sveshnikov, I.A. and Kolodnitsky, V.N., Optimization of the hard alloy cutter arrangement in the drilling bit body, Sverkhtverd.Mater., 2006, vol. 28, no. 4, pp. 70–75.

    Google Scholar 

  20. Aleksandrov, V.A. and Mechnik, V.A., Effect of heat conduction of diamonds and heat-exchange coefficient on contact temperature and wear of cutting disks, Trenie Iznos, 1993, vol. 14, no. 6, pp. 1115–1117.

    CAS  Google Scholar 

  21. Bondarenko, N.A., Zhukovsky, A.N., and Mechnik, V.A., Analysis of the basic theories of sintering of materials. 1. Sintering under isothermal and nonisothermal conditions (a review), Sverkhtverd. Mater., 2006, no. 6, pp. 3–17.

  22. de Oliveira, L.J., Bobrovnitchii, G.S., and Filgueira, M., Processing and characterization of impregnated diamond cutting tools using a ferrous metal matrix, Int. J. Refract. Met. Hard Mater., 2007, vol. 25, no. 4, pp. 328–335.

    Article  CAS  Google Scholar 

  23. Borowiecka-Jamrozek, J., Microstructure and mechanical properties a new iron-base material used for the fabrication of sintered diamond tools, Adv. Mater. Res., 2014, vol. 1052, pp. 520–523.

    Article  CAS  Google Scholar 

  24. Borowiecka-Jamrozek, J. and Lachowski, J., Modeling of the mechanical state of a diamond particle in the metallic matrix, Adv. Mater. Res., 2014, vol. 874, pp. 127–132.

    Article  Google Scholar 

  25. Borowiecka-Jamrozek, J. and Lachowski, J., Properties of sinters produced from commercially available powder mixtures, Arch. Foundry Eng., 2016, vol. 16, no. 4, pp. 37–40.

    Article  CAS  Google Scholar 

  26. Oliveira, F.A.C., Anjinho, C.A., Coelho, A., Amaral, P.M., and Coelho, M., PM materials selection: The key for improved performance of diamond tools, Met. Powder Rep., 2017, vol. 72, no. 5, pp. 339–344.

    Article  Google Scholar 

  27. Borowiecka-Jamrozek, J.M., Konstanty, J., and Lachowski, J., The application of a ball-milled Fe–Cu–Ni powder mixture to fabricate sintered diamond tools, Arch. Foundry Eng., 2018, vol. 18, no. 1, pp. 5–8.

    CAS  Google Scholar 

  28. Kolodnits’kyi, V.M. and Bagirov, O.E., On the structure formation of diamond containing composites used in drilling and stone working tools (A review), J. Superhard Mater., 2017, vol. 39, no. 1, pp. 1–17.

    Article  Google Scholar 

  29. Mechnik, V.A., Production of diamond–(Fe–Cu–Ni–Sn) composites with high wear resistance, Powder Metall. Met. Ceram., 2014, vol. 52, nos. 9–10, pp. 577–587.

    Article  CAS  Google Scholar 

  30. Sidorenko, D.A., Zaitsev, A.A., Kirichenko, A.N., Levashov, E.A., Kurbatkina, V.V., Loginov, P.A., Rupasov, S.I., and Andreev, V.A., Interaction of diamond grains with nanosized alloying agents in metal–matrix composites as studied by Raman spectroscopy, Diamond Relat. Mater., 2013, no. 38, pp. 59–62.

  31. Zaitsev, A.A., Sidorenko, D.A., Levashov, E.A., Kurbatkina, V.V., Andreev, V.A., Rupasov, S.I., and Sevast’yanov, P.V., Diamond tools in metal bonds dispersion-strengthened with nanosized particles for cutting highly reinforced concrete, J. Superhard Mater., 2010, vol. 32, pp. 423–431.

    Article  Google Scholar 

  32. Mechnik, V.A., Bondarenko, N.A., Dub, S.N., Kolodnitskyi, V.M., Nesterenko, Yu.V., Kuzin, N.O., Zakiev, I.M., and Gevorkyan, E.S., A study of microstructure of Fe–Cu–Ni–Sn and Fe–Cu–Ni–Sn–VN metal matrix for diamond containing composites, Mater. Charact., 2018, vol. 146, pp. 209–216.

    Article  CAS  Google Scholar 

  33. Mechnik, V.A., Bondarenko, N.A., Kolodnitskyi, V.M., Zakiev, V.I., Zakiev, I.M., Storchak, M., Dub, S.N., and Kuzin, N.O., Physico-mechanical and tribological properties of Fe–Cu–Ni–Sn and Fe–Cu–Ni–Sn–VN nanocomposites obtained by powder metallurgy methods, Tribol. Ind., 2019, vol. 41, no. 2, pp. 188–198.

    Article  Google Scholar 

  34. Mechnik, V.A., Bondarenko, N.A., Kolodnitskyi, V.M., Zakiev, V.I., Zakiev, I.M., Ignatovich, S.R., Dub, S.N., and Kuzin, N.O., Formation of Fe–Cu–Ni–Sn–VN nanocrystalline matrix by vacuum hot pressing for diamond-containing composite: Mechanical and tribological properties, J. Superhard Mater., 2019, vol. 41, no. 6, pp. 388–401.

    Article  Google Scholar 

  35. Mechnyk, V.A., Regularities of structure formation in diamond–Fe–Cu–Ni–Sn–CrB2 systems, Mater. Sci., 2013, vol. 49, no. 1, pp. 93–101.

    Article  CAS  Google Scholar 

  36. Mechnik, V.A., Effect of hot recompaction parameters on the structure and properties of diamond–(Fe–Cu–Ni–Sn–CrB2) composites, Powder Metall. Met. Ceram., 2014, vol. 52, nos. 11–12, pp. 709–721.

    Article  CAS  Google Scholar 

  37. Leyland, A. and Matthews, A., On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimized tribological behavior, Wear, 2000, no. 246, pp. 1–11.

  38. Soldan, J. and Musil, J., Structure and mechanical properties of DC magnetron sputtered TiC/Cu films, Vacuum, 2006, vol. 81, pp. 531–538.

    Article  CAS  Google Scholar 

  39. Musil, J., Tribological and mechanical properties of nanocrystalline n-TiC/a-C nanocomposite thin films, J. Vac. Sci. Technol., A, 2010, vol. 28, no. 2, pp. 244–249.

    Article  CAS  Google Scholar 

  40. Bondarenko, M.O., Mechnik, V.A., and Suprun, M.V., Shrinkage and shrinkage rate behavior in Cdiamond–Fe–Cu–Ni–Sn–CrB2 system during hot pressing of pressureless-sintered compacts, J. Superhard Mater., 2009, vol. 31, no. 4, pp. 232–240.

    Article  Google Scholar 

  41. Kraus, W. and Nolze, G., POWDER CELL—A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns, J. Appl. Cryst., 1996, vol. 29, pp. 301–303.

    Article  CAS  Google Scholar 

  42. Selected Powder Diffraction Data for Education & Training: Search Manual and Data Cards, Swarthmore, PA: Int. Centre Diffraction Data, 1988.

  43. Zakiev, I. and Aznakayev, E., Micro Gamma: The device for the estimation of physico-mechanical properties of materials, JALA, 2002, vol. 7, no. 5, pp. 44–45.

    Google Scholar 

  44. Vasil’ev, M.O., Mordyuk, B.M., Voloshko, S.M., Zakiev, V.I., Burmak, A.P., and Pefti, D.V., Hardening of surface layers of Cu–39Zn–1Pb brass at holding and high-frequency impact deformation in liquid nitrogen, Metallofiz.Noveishie Tekhnol., 2019, vol. 41, no. 11, pp. 1499–1517.

    Article  CAS  Google Scholar 

  45. Oliver, W.C. and Pharr, G.M., An improved for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 1992, vol. 7, no. 6, pp. 1564–1583.

    Article  CAS  Google Scholar 

  46. Storchak, M., Zakiev, I., and Träris, L., Mechanical properties of subsurface layers in the machining of the titanium alloy Ti10V2Fe3Al, J. Mech. Sci. Technol., 2018, vol. 32, pp. 315–322.

    Article  Google Scholar 

  47. Vasylyev, M.A., Mordyuk, B.N., Sidorenko, S.I., Voloshko, S.M., Burmak, A.P., Kruhlov, I.O., and Zakiev, V.I., Characterization of ZrN coating low-temperature deposited on the preliminary Ar+ ions treated 2024 Al-alloy, Surf. Coat. Technol., 2019, vol. 361, pp. 413–424.

    Article  CAS  Google Scholar 

  48. Zakiev, V., Markovsky, A., Aznakayev, E., Zakiev, I., and Gursky, E., Micro-mechanical properties of bio-materials, Proc. SPIE, 2005, vol. 5959, 595916.

  49. Fuertes, V., Cabrera, M.J., Seores, J., Muñoz, D., Fernández, J.F., and Enríquez, E., Enhanced wear resistance of engineered glass-ceramic by nanostructured self-lubrication, Mater. Des., 2019, vol. 168, 107623.

    Article  CAS  Google Scholar 

  50. ASTM G99-17: Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus, West Conshohocken, PA: ASTM Int., 2017.

  51. ASTM G171-03: Standard Test Method for Scratch Hardness of Materials Using a Diamond Stylus, West Conshohocken, PA: ASTM Int., 2017.

  52. Kovalchenko, A.M., Goel, S., Zakiev, I.M., Pashchenko, E.A., and Al-Sayegh, R., Suppressing scratch-induced brittle fracture in silicon by geometric design modification of the abrasive grits, J. Mater. Res. Technol., 2019, vol. 8, no. 1, pp. 703–712.

    Article  CAS  Google Scholar 

  53. Firstov, S.A., Gorban, V.F., Krapivka, N.A., Pechkovskii, E.P., Danilenko, N.I., and Karpets, M.V., Mechanical properties of multicomponent titanium alloy, Strength Mater., 2010, vol. 42, pp. 622–630.

    Article  CAS  Google Scholar 

  54. Tugoplavkie soedineniya: Spravochnik (Refractory Compounds: Handbook), Samsonov, G.V. and Vinitskii, I.M., Eds., Moscow: Metallurgiya, 1976.

    Google Scholar 

  55. Svoistva elementov. Chast’ 1. Fizicheskie svoistva. Spravochnik (Properties of the Elements, Part 1: Physical Properties. Handbook), Samsonov, G.V., Ed., Moscow: Metallurgiya, 1976.

    Google Scholar 

  56. Hassani, S., Bielawski, M., Beres, W., Martinu, L., Balazinski, M., and Klemberg-Sapieha, J.E., Predictive tools for the design of erosion resistant coatings, Surf. Coat. Technol., 2008, vol. 203, pp. 204–210.

    Article  CAS  Google Scholar 

  57. Bousser, E., Benkahoul, M., Martinu, L., and Klemberg-Sapieha, J.E., Effect of microstructure on the erosion resistance of Cr–Si–N coatings, Surf. Coat. Technol., 2008, vol. 203, pp. 776–778.

    Article  CAS  Google Scholar 

Download references

Funding

This study was performed within the framework of State Budget Research Topics in accordance with the coordination plans of the Ministry of Education and Science of Ukraine (state registration number 0117 U 000391).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Mechnik or V. M. Kolodnitskyi.

Additional information

Translated by O. Kadkin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mechnik, V.A., Bondarenko, N.A., Kolodnitskyi, V.M. et al. Mechanical and Tribological Properties of Fe−Cu−Ni−Sn Materials with Different Amounts of CrB2 Used as Matrices for Diamond-Containing Composites. J. Superhard Mater. 42, 251–263 (2020). https://doi.org/10.3103/S1063457620040061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457620040061

Keywords:

Navigation