Skip to main content
Log in

Genetic diversity of Fusarium meridionale, F. austroamericanum, and F. graminearum isolates associated with Fusarium head blight of wheat in Brazil

  • Original Article
  • Published:
Tropical Plant Pathology Aims and scope Submit manuscript

Abstract

One of the biggest challenges of wheat production worldwide is to overcome fungal diseases, and among these is Fusarium head blight (FHB) caused mainly by the Fusarium graminearum species complex (FGSC). The occurrence of FHB can lead to contamination of grains with mycotoxins, which are harmful to human and animal health. In South America, in addition to F. graminearum sensu stricto (F. graminearum), which is the most common causal agent of FHB worldwide, F. meridionale and F. austroamericanum have also been found in wheat fields. Special attention should be paid to F. meridionale because it produces the trichothecene mycotoxin nivalenol, which has potentially higher levels of toxicity when compared with that of other trichothecene produced by the FGSC. Knowledge of the diversity and genetic structure of populations of pathogens can assist in understanding pathogen survival in the face of host genetic resistance, crop rotation, and management with fungicides. In this study, we used 10 inter-simple sequence repeat (ISSR) primers to estimate the variability, diversity, and genetic structure of populations of F. graminearum, F. meridionale, and F. austroamericanum co-occurring in wheat fields in Paraná State, Brazil. The population of F. graminearum showed the greatest genetic variability according to its polymorphism (P = 86.61%), Nei’s genetic diversity (h = 0.28), and Shannon diversity (I = 0.43) indices as compared with that of the populations of F. meridionale (P = 75.89%, h = 0.23, I = 0.36) and F. austroamericanum (P = 67.86%, h = 0.22, I = 0.33). The dendrogram, principal coordinate analysis, Bayesian analysis (K = 4), and the differentiation index (GST = 0.27) showed very high structure and, consequently, high species differentiation. The overall analysis of our data indicates high variability and genetic structure of the studied populations. This genetic condition guarantees high resilience of these species and could make it difficult to obtain wheat cultivars with good resistance to FHB, as well as may cause chemical control to be less effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albayrak G, Yörük E, Gazdağli A, Sharifnabi B (2016) Genetic diversity among Fusarium graminearum and F. culmorum isolates based on ISSR markers. Archives of Biological Sciences 68:333–343

    Google Scholar 

  • Altinok HH, Can C, Altinok MA (2018) Characterization of Fusarium oxysporum f. sp. melongenae isolates from Turkey with ISSR markers and DNA sequence analyses. European Journal of Plant Pathology 150:609–621

    CAS  Google Scholar 

  • Alvarez CL, Azcarate MP, Pinto VF (2009) Toxigenic potential of Fusarium graminearum sensu stricto isolates from wheat in Argentina. International Journal of Food Microbiology 135:131–135

    CAS  PubMed  Google Scholar 

  • Amarasinghe C, Sharanowski B, Fernando WGD (2019) Molecular phylogenetic relationships trichothecene chemotype diversity and aggressiveness of isolates in a global collection of Fusarium graminearum species. Toxins 11:e263

    PubMed  Google Scholar 

  • Aoki T, Ward TJ, Kistler HC, O’Donnell K (2012) Systematics phylogeny and trichothecene mycotoxin potential of Fusarium head blight cereal pathogens. Mycotoxins 62:91–102

    CAS  Google Scholar 

  • Arif M, Zaidi NW, Haq QMR, Singh US (2008) Genetic variability within Fusarium solani as revealed by PCR-fingerprinting based on ISSR markers. Indian Phytopathology 61:305–310

    CAS  Google Scholar 

  • Astolfi P, dos Santos J, Schneider L, Gomes LB, Silva CN, Tessmann DJ, Del Ponte EM (2011) Molecular survey of trichothecene genotypes of Fusarium graminearum species complex from barley in southern Brazil. International Journal of Food Microbiology 148:197–201

    CAS  PubMed  Google Scholar 

  • Barrett RD, Schluter D (2008) Adaptation from standing genetic variation. Trends in Ecology & Evolution 23:38–44

    Google Scholar 

  • Bertero A, Moretti A, Spicer LJ, Caloni F (2018) Fusarium molds and mycotoxins: potential species-specific effects. Toxins 10:e244

    PubMed  Google Scholar 

  • Boff T, Espindula LF, Bücker-Neto L, Minella E, Milacha SCK, Da-Silva PR (2019) Inheritance of aluminum tolerance in the wheat cultivar Toropi and new findings about the introduction of this trait into the Brazilian wheat germplasm. Environmental and Experimental Botany 157:91–99

    CAS  Google Scholar 

  • Boutigny A-L, Ward TJ, Van Coller GJ, Flett B, Lamprecht SC, O’Donnell K, Viljoen A (2011) Analysis of the Fusarium graminearum species complex from wheat, barley and maize in South Africa provides evidence of species-specific differences in host preference. Fungal Genetics and Biology 48:914–920

    CAS  PubMed  Google Scholar 

  • Burdon JJ, Thrall PH, Ericson L (2006) The current and future dynamics of disease in plant communities. Annual Review of Phytopathology 44:19–39

    CAS  PubMed  Google Scholar 

  • Chaves MS, Martinelli JA, Wesp-Guterres C, Graichen FAS, Brammer SP, Scagliusi SM, Da-Silva PR, Wietholter P, Torres GAM, Lau EY, Consoli L, Chaves ALS (2013) The importance for food security of maintaining rust resistance in wheat. Food Security 5:157–176

    Google Scholar 

  • Cunha CMS, Hinz RH, Pereira A, Tcacenco FA, Stadnik MJ (2015) Aggressiveness and genetic diversity of Fusarium oxysporum f. sp. cubense from Santa Catarina, southern Brazil. Tropical Plant Pathology 40:326–334

    Google Scholar 

  • Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology 13:414–430

    PubMed  PubMed Central  Google Scholar 

  • Del Ponte EM, Fernandes JMC, Pavan W, Baethgen WE (2009) A model-based assessment of the impacts of climate variability on Fusarium head blight seasonal risk in southern Brazil. Journal of Phytopathology 157:675–681

    Google Scholar 

  • Del Ponte EM, Spolti P, Ward TJ, Gomes LB, Nicolli CP, Kuhnem PR, Siva CN, Tessmann DJ (2015) Regional and field-specific factors affect the composition of Fusarium head blight pathogens in subtropical no-till wheat agroecosystem of Brazil. Phytopathology 105:246–254

    PubMed  Google Scholar 

  • Desjardins AE, Proctor RH (2011) Genetic diversity and trichothecene chemotypes of the Fusarium graminearum clade isolated from maize in Nepal and identification of a putative new lineage. Fungal Biology 115:38–48

    CAS  PubMed  Google Scholar 

  • Dinolfo MI, Stenglein SA, Moreno MV, Nicholson P, Jennings P, Salerno GL (2010) ISSR markers detect high genetic variation among Fusarium poae isolates from Argentina and England. European Journal of Plant Pathology 127:483–491

    CAS  Google Scholar 

  • Divakara ST, Santosh P, Aiyaz M, Ramana MV, Hariprasad P, Nayaka SC, Niranjana SR (2013) Molecular identification and characterization of Fusarium spp. associated with sorghum seeds. Journal of the Science of Food and Agriculture 94:1132–1139

    PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 9:11–15

    Google Scholar 

  • Earl DA, VonHold BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4:359–361

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14:2611–2620

    CAS  PubMed  Google Scholar 

  • Fedrigo K, Giacomin RM, Faria CMDR, Da-Silva PR (2016) ISSR primers for analysis of genetic variability of Stenocarpella maydis. Tropical Plant Pathology 41:1–6

    Google Scholar 

  • Feksa HR, Couto HTZ, Garozi R, Almeida JL, Gardiano CG, Tessmann DJ (2019) Pre- and postinfection application of strobilurin-triazole premixes and single fungicides for control of fusarium head blight and deoxynivalenol mycotoxin in wheat. Crop Protection 117:128–134

    CAS  Google Scholar 

  • Fernández Pinto VE, Terminiello L, Basilico JC, Rittieni A (2008) Natural occurrence of Nivalenol and mycotoxigenic potential of Fusarium graminearum isolates in wheat affected by head blight in Argentina. Brazilian Journal of Microbiology 39:157–162

    Google Scholar 

  • Georgopoulos SG, Skylakakis G (1986) Genetic variability in the fungi and the problem of fungicide resistance. Crop Protection 5:299–305

    CAS  Google Scholar 

  • Hampl V, Pavlícek A, Flegr J (2001) Construction and bootstrap analysis of DNA fingerprinting-based phylogenetic trees with a freeware program FreeTree: application to trichomonad parasites. International Journal of Systematic and Evolutionary Microbiology 51:731–735

    CAS  PubMed  Google Scholar 

  • Laday M, Juhàsz A, Mulè G, Moretti A, Szécsi A, Logrieco A (2004) Mitochondrial DNA diversity and lineage determination of European isolates of Fusarium graminearum (Gibberella zeae). European Journal of Plant Pathology 110:545–550

    CAS  Google Scholar 

  • Malbrán I, Mourelos CA, Girotti JR, Balatti PA, Lori GA (2014) Toxigenic capacity and trichothecene production by Fusarium graminearum isolates from Argentina and their relationship with aggressiveness and fungal expansion in the wheat spike. Phytopathology 104:357–364

    PubMed  Google Scholar 

  • Malbrán I, Mourelos CA, Balatti PA, Lori GA (2019) Aggressiveness and genetic variability of Fusarium graminearum populations from the main wheat production area of Argentina. Journal of King Saud University - Science 31:1215–1219

    Google Scholar 

  • Mariano LC, Zchonski FL, da Silva CM, Da-Silva PR (2019) Genetic variability in a Brazilian apple germplasm collection with low chilling requirements. PeerJ 6:e6265

    PubMed  PubMed Central  Google Scholar 

  • McDonald BA, Linde C (2002) The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica 124:163–180

    CAS  Google Scholar 

  • Mishra PK, Tewari JP, Clear RM, Turkington TK (2004) Molecular genetic variation and geographical structuring in Fusarium graminearum. The Annals of Applied Biology 145:299–307

    CAS  Google Scholar 

  • Nei M (1972) Genetic distance between populations. The American Naturalist 106:283–291

    Google Scholar 

  • Nevo E (1978) Genetic variation in natural populations: patterns and theory. Theoretical Population Biology 13:121–177

    CAS  PubMed  Google Scholar 

  • O’Donnell K, Kistler HC, Tacke BK, Casper HH (2000) Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proceedings of the National Academy of Sciences of the United States of America 97:7905–7910

    PubMed  PubMed Central  Google Scholar 

  • O’Donnell K, Ward TJ, Geiser DM, Kistler HC, Aoki T (2004) Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genetics and Biology 41:600–623

    PubMed  Google Scholar 

  • O’Donnell K, Ward TJ, Aberra D, Kistler HC, Aoki T, Orwig N, Kimura M, Bjørnstad Å, Klemsdal SS (2008) Multilocus genotyping and molecular phylogenetics resolve a novel head blight pathogen within the Fusarium graminearum species complex from Ethiopia. Fungal Genetics and Biology 45:1514–1522

    PubMed  Google Scholar 

  • Ortega LM, Dinolfo MI, Astoreca AL, Alberione EJ, Stenglein SA, Alconada TM (2016) Molecular and mycotoxin characterization of Fusarium graminearum isolates obtained from wheat at a single field in Argentina. Mycological Progress 15:e1

    Google Scholar 

  • Palacios SA, Merlera GG, Erazo J, Reynoso MM, Farnochi MC, Torres AM (2017) Trichothecene genotype and genetic variability of Fusarium graminearum and F. cerealis isolated from durum wheat in Argentina. European Journal of Plant Pathology 149:969–981

    CAS  Google Scholar 

  • Palazzini JM, Yerkovich N, Alberione E, Chiotta M, Chulze SN (2017) An integrated dual strategy to control Fusarium graminearum sensu stricto by the biocontrol agent Streptomyces sp. RC 87B under field conditions. Plant Gene 9:13–18

    Google Scholar 

  • Pan D, Mionetto A, Calero N, Reynoso MM, Torres A, Bettucci L (2016) Population genetic analysis and trichothecene profiling of Fusarium graminearum from wheat in Uruguay. Genetics and Molecular Research 15:1–11

    CAS  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research - an update. Bioinformatics 28:2537–2539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Wen X, Falush D (2010) Documentation for STRUCTURE software: version 2.3. University of Chicago, Chicago, USA

    Google Scholar 

  • Ramírez ML, Reynoso MM, Farnochi MC, Chulze S (2006) Vegetative compatibility and mycotoxin chemotypes among Fusarium graminearum (Gibberella zeae) isolates from wheat in Argentina. European Journal of Plant Pathology 115:139–148

    Google Scholar 

  • Ramirez ML, Reynoso MM, Farnochi MC, Torres AM, Leslie JF, Chulze SN (2007) Population genetic structure of Gibberella zeae isolated from wheat in Argentina. Food Additives and Contaminants 24:1115–1120

    CAS  PubMed  Google Scholar 

  • Reynoso MM, Ramirez ML, Torres AM, Chulze SN (2011) Trichothecene genotypes and chemotypes in Fusarium graminearum strains isolated from wheat in Argentina. International Journal of Food Microbiology 145:444–448

    CAS  PubMed  Google Scholar 

  • Rohlf FJ (2000) NTSYS-pc numerical taxonomy and multivariate analysis system version 22. Exeter Software, Setauket, New York

    Google Scholar 

  • Rosa J, Weber GG, Cardoso R, Górski F, Da-Silva PR (2017) Variability and population genetic structure in Achyrocline flaccida (Weinm.) DC., a species with high value in folk medicine in South America. PLoS ONE 12:e0183533–e0183531

    PubMed  PubMed Central  Google Scholar 

  • Santillán-Mendoza R, Pineda-Vaca D, Fernández-Pavía SP, Montero-Castro JC, Goss EM, Benítez-Malvido J, Rodríguez-Alvarado G (2019) Genetic diversity of Fusarium mexicanum, causal agent of mango and big-leaf mahogany malformation in Mexico. Molecular Biology Reports 46:3887–3897

    PubMed  Google Scholar 

  • Sarver BAJ, Ward TJ, Gale LR, Broz K, Kistler HC, Aoki T, Nicholson P, Carter J, O’Donnell K (2011) Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance. Fungal Genetics and Biology 48:1096–1107

    PubMed  Google Scholar 

  • Schothorst RC, van Egmond HP (2004) Report from SCOOP task 3.2.10 “collection of occurrence data of Fusarium toxins in food and assessment of dietary intake by the population of EU member states”: subtask: trichothecenes. Toxicology Letters 153:133–143

    CAS  PubMed  Google Scholar 

  • Scoz LB, Astolfi P, Reartes DS, Schmale DG III, Moraes MG, Del Ponte EM (2009) Trichothecene mycotoxin genotypes of Fusarium graminearum sensu stricto and Fusarium meridionale in wheat from southern Brazil. Plant Pathology 58:344–351

    CAS  Google Scholar 

  • Sobrova P, Adam V, Vasatkova A, Beklova M, Zeman L, Kizek R (2010) Deoxynivalenol and its toxicity. Interdisciplinary Toxicology 3:94–99

    CAS  PubMed  PubMed Central  Google Scholar 

  • Starkey DE, Ward TJ, Aoki T, Gale LR, Kistler HC, Geiser DM, Suga H, Tóth B, Varga J, O’Donnell K (2007) Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genetics and Biology 44:1191–1204

    CAS  PubMed  Google Scholar 

  • Suga H, Karugia GW, Ward T, Gale LR, Tomimura K, Nakajima T, Miyasaka A, Koizumi S, Kageyama K, Hyakumachi M (2008) Molecular characterization of the Fusarium graminearum species complex in Japan. Phytopathology 98:159–166

    CAS  PubMed  Google Scholar 

  • Talas F, Parzies HK, Miedaner T (2011) Diversity in genetic structure and chemotype composition of Fusarium graminearum sensu stricto populations causing wheat head blight in individual fields in Germany. European Journal of Plant Pathology 131:39–48

    Google Scholar 

  • Umpiérrez-Failache M, Garmendia G, Pereyra S, Rodríguez-Haralambides A, Ward TJ, Vero S (2013) Regional differences in species composition and toxigenic potential among Fusarium head blight isolates from Uruguay indicate a risk of nivalenol contamination in new wheat production areas. International Journal of Food Microbiology 166:135–140

    PubMed  Google Scholar 

  • Van der Lee T, Zhang H, van Diepeningen A, Waalwijk C (2015) Biogeography of Fusarium graminearum species complex and chemotypes: a review. Food Additives and Contaminants 32:453–460

    PubMed  Google Scholar 

  • Varga E, Wiesenberger G, Hametner C, Ward TJ, Dong Y, Schöfbeck D, McCormick S, Broz K, Stückler R, Schuhmacher R, Krska R, Kistler HC, Berthiller F, Adam G (2015) New tricks of an old enemy: isolates of Fusarium graminearum produce a type a trichothecene mycotoxin. Environmental Microbiology 17:2588–2600

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Cheng Y (2017) Identification and trichothecene genotypes of Fusarium graminearum species complex from wheat in Taiwan. Botanical Studies 58:e4

    Google Scholar 

  • Wang J, Zhao Z, Yang X, Yang J, Gong A, Zhang J, Chen L, Zhou C (2019) Fusarium graminearum species complex and trichothecene genotype. In: JW DV, Trucksess MW, Jackson LS (eds) Mycotoxins and food safety, vol 2019, 1st edn. IntechOpen, London UK, pp 1–19

    Google Scholar 

  • Ward TJ, Clear RM, Rooney AP, O’Donnell (2008) An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genetics and Biology 45:473–484

    PubMed  Google Scholar 

  • Windels CE (2000) Economic and social impacts of Fusarium head blight: changing farms and rural communities in the Northern Great Plains. Phytopathology 90:17–21

    CAS  PubMed  Google Scholar 

  • Xia R, Schaafsma AW, Wu F, Hooker DC (2020) Impact of the improvements in Fusarium head blight and agronomic management on economics of winter wheat. World Mycotoxin Journal (online first):1–18. https://doi.org/10.3920/WMJ2019.2518

  • Yeh FC, Yang RC, Boyle T (1999) POPGENE: Microsoft Windows-based freeware for population genetic analysis Version 1.31. University of Alberta Canada and Centre for International Forestry Research, Canada

  • Yerkovich N, Fumero MV, Cantoro R, Palazzini JM, Chulze SN (2020) Population structure and genetic diversity of Fusarium graminearum sensu stricto, the main wheat pathogen producing Fusarium head blight in Argentina. European Journal of Plant Pathology 156:635–646

    CAS  Google Scholar 

  • Yli-Mattila T, Gagkaeva T, Ward TJ, Aoki T, Kistler HC, O’Donnell K (2009) A novel Asian clade within the Fusarium graminearum species complex includes a newly discovered cereal head blight pathogen from the Russian Far East. Mycologia 101:841–852

    PubMed  Google Scholar 

  • Zeller KA, Bowden RL, Leslie JF (2003) Diversity of epidemic populations of Gibberella zeae from small quadrats in Kansas and North Dakota. Phytopathology 93:874–880

    PubMed  Google Scholar 

  • Zeller KA, Bowden RL, Leslie JF (2004) Population differentiation and recombination in wheat scab populations of Gibberella zeae from the United States. Molecular Ecology 13:563–571

    PubMed  Google Scholar 

  • Zhang H, Van der Lee T, Waalwijk C, Chen W, Xu J, Xu J, Zhang Y, Feng J (2012) Population analysis of the Fusarium graminearum species complex from wheat in China show a shift to more aggressive isolates. PLoS ONE 7:e31722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Luo W, Pan Y, Xu J, Xu JS, Chen WQ, Feng J (2014) First report of Fusarium maize ear rot caused by Fusarium meridionale in China. Plant Disease 98:e1156

    Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeats (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    CAS  PubMed  Google Scholar 

Download references

Funding

The authors thank Fundacão Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Estado do Paraná (grant number 229/2010), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES (grant number 001), and Cooperativa Agrária Agroindutrial for financial support to this research.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: PRS, DJT, MHMA; methodology: PRS, MHMA, FLZ, YKS, DLL; formal analysis and investigation: PRS, MHMA, FLZ, YKS, DLL; writing—original draft preparation: MHMA, FLZ; writing—review and editing: Paulo PRS, DJT, MHMA; funding acquisition: PRS, DJT, MHMA; supervision: PRS. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Paulo Roberto Da-Silva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(TXT 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Arruda, M.H.M., Zchosnki, F.L., Silva, Y.K. et al. Genetic diversity of Fusarium meridionale, F. austroamericanum, and F. graminearum isolates associated with Fusarium head blight of wheat in Brazil. Trop. plant pathol. 46, 98–108 (2021). https://doi.org/10.1007/s40858-020-00403-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40858-020-00403-3

Keywords

Navigation