Skip to main content
Log in

A unified view of the first-excited 2+ and 3 states of Cd, Sn and Te isotopes

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Symmetries are known to play an important role in the low-lying level structure of Sn isotopes, mostly in terms of the seniority and generalized seniority schemes. In this paper, we revisit the multi-j generalized seniority approach for the first excited 2+ and 3 states in the Cd (Z = 48), Sn (Z = 50) and Te (Z = 52) isotopes, where the Cd and Te isotopes represent two-proton hole and two-proton particle nuclei, thus involving both kind of particles (protons and neutrons) in contrast to Sn isotopes. Interestingly, the approach based on neutron valence space alone is able to explain the B(E2) and B(E3) trends respectively for the 2+ and 3 states in all the three Cd, Sn and Te isotopes. The new results on the inverted parabolic behaviour of B(E3) values in Cd and Te isotopes are understood in a manner identical to that of Sn isotopes by using the generalized seniority scheme. No shell quenching is supported by these calculations; hence, the neutron magic numbers, N = 50 and N = 82, remain robust in these isotopic chains. It is quite surprising that the generalized seniority continues to be reasonably successful away from the semi-magic region, thus providing a unifying view of the 2+ and 3 states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Wigner, Phys. Rev. 51, 106 (1937)

    Article  ADS  Google Scholar 

  2. A. Bohr, B.R. Mottelson,Nuclear structure (W.A. Benjamin Inc., New York, 1975), Vol. I: Single particle motion, 1969 and Vol. II: Nuclear deformations

  3. M.G. Mayer, J.H.D. Jensen,Elementary theory of nuclear shell structure (John Wiley and Sons Inc., New York, 1955)

  4. G. Racah, Phys. Rev. 63, 367 (1943)

    Article  ADS  Google Scholar 

  5. G. Racah, inL. Farkas memorial (Research Council of Israel, Jerusalem, 1952), Vol. 294

  6. A. de Shalit, I. Talmi,Nuclear shell theory (Academic Press, New York and London, 1963)

  7. R.F. Casten,Nuclear structure from a simple perspective (Oxford University Press, 2000)

  8. K. Heyde,The nuclear shell model (Springer-Verlag, Berlin, Heidelberg, 1990)

  9. I. Talmi,Simple models of complex nuclei (Harwood, 1993)

  10. P.V. Isacker, Nucl. Phys. News 24, 23 (2014)

    Article  Google Scholar 

  11. B. Maheshwari, Lecture notes of SERB School on Role of Symmetries in Nuclear Physics (Amity Institute of Nuclear Science and Technology, AUUP, Noida, 2019), unpublished

  12. V.K.B. Kota,SU(3) symmetry in atomic nuclei (Springer, 2020)

  13. B. Maheshwari, A.K. Jain, Phys. Lett. B 753, 122 (2016)

    Article  ADS  Google Scholar 

  14. B. Maheshwari, A.K. Jain, B. Singh, Nucl. Phys. A 952, 62 (2016)

    Article  ADS  Google Scholar 

  15. A.K. Jain, B. Maheshwari, Nucl. Phys. Rev. 34, 73 (2017)

    Google Scholar 

  16. A.K. Jain, B. Maheshwari, Phys. Scr. 92, 074004 (2017)

    Article  ADS  Google Scholar 

  17. B. Maheshwari, S. Garg, A.K. Jain, Pramana-J. Phys. (Rapid Commun.) 89, 75 (2017)

    Article  ADS  Google Scholar 

  18. B. Maheshwari, A.K. Jain, Nucl. Phys. A 986, 232 (2019)

    Article  ADS  Google Scholar 

  19. B. Maheshwari, H.A. Kassim, N. Yusof, A.K. Jain, Nucl. Phys. A 992, 121619 (2019)

    Article  Google Scholar 

  20. B.H. Flowers, Proc. R. Soc. (London) A 212, 248 (1952)

    ADS  Google Scholar 

  21. A.K. Kerman, Ann. Phys. (NY) 12, 300 (1961)

    Article  ADS  Google Scholar 

  22. K. Helmers, Nucl. Phys. 23, 594 (1961)

    Article  Google Scholar 

  23. A.Arima, M. Ichimura, Prog. Theor. Phys. 36, 296 (1966)

    Article  ADS  Google Scholar 

  24. I. Talmi, Nucl. Phys. A 172, 1 (1971)

    Article  ADS  Google Scholar 

  25. S. Shlomo, I. Talmi, Nucl. Phys. A 198, 82 (1972)

    Article  ADS  Google Scholar 

  26. R. Arvieu, S.A. Moszokowski, Phys. Rev. 145, 830 (1966)

    Article  ADS  Google Scholar 

  27. V.K.B. Kota, Bulg. J. Phys. 44, 454 (2017)

    Google Scholar 

  28. National Nuclear Data Center, www.nndc.bnl.gov/

  29. C. Qi, J. Phys.: Conf. Ser. 413, 012037 (2013)

    Google Scholar 

  30. I.O. Morales, P. Van Isacker, I. Talmi, Phys. Lett. B 703, 606 (2011)

    Article  ADS  Google Scholar 

  31. B. Pritychenko, M. Birch, B. Singh, M. Horoi, At. Data Nucl. Data Tables 107, 1 (2016)

    Article  ADS  Google Scholar 

  32. T. Kibedi, R.H. Spear, At. Data Nucl. Data Tables 80, 35 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhoomika Maheshwari.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maheshwari, B. A unified view of the first-excited 2+ and 3 states of Cd, Sn and Te isotopes. Eur. Phys. J. Spec. Top. 229, 2485–2495 (2020). https://doi.org/10.1140/epjst/e2020-000097-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2020-000097-3

Navigation