Skip to main content
Log in

Distribution of higher order spacing ratios in one- plus two-body random matrix ensembles with spin symmetry

Distribution of higher order spacing ratios in embedded ensembles

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Random matrix ensembles defined by a mean-field one-body and chaos generating two-body interaction are proved to describe statistical properties of complex interacting many-body quantum systems in general and complex atomic nuclei (or nuclei in the chaotic region) in particular. These ensembles are generically called embedded ensembles of (1 + 2)-body interactions or simply EE(1 + 2) and their GOE random matrix version is called EGOE(1 + 2). In this paper, we study the distribution of non-overlapping spacing ratios of higher-orders in EGOE(1 + 2) for both fermion and boson systems including spin degree of freedom (also without spin) that have their origin in nuclear shell model and the interacting boson model [V.K.B. Kota, N.D. Chavda, Int. J. Mod. Phys. E 27, 1830001 (2018)]. We obtain a very good correspondence between the numerical results and a recently proposed generalized Wigner surmise like scaling relation. These results confirm that the proposed scaling relation is universal in understanding spacing ratios in complex many-body quantum systems. Using spin ensembles, we demonstrate that the higher order spacing ratio distributions can also reveal quantitative information about the underlying symmetry structure (examples are isospin in lighter nuclei and scissors states in heavy nuclei).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.E. Porter,Statistical theories of spectra: fluctuations (Academic Press, New York, 1965)

  2. M.L. Mehta,Random matrices (Elsevier B.V., Netherlands, 2004)

  3. G. Akemann, J. Baik, P. Di Francesco (Eds.),The Oxford handbook of random matrix theory (Oxford University Press, New York, 2011)

  4. S.D. Geraedts, R. Nandkishore, N. Regnault, Phys. Rev. B 93, 174202 (2016)

    Article  ADS  Google Scholar 

  5. H. Hasegawa, Y. Sakamoto, Prog. Theor. Phys. Suppl. 139, 112 (2000)

    Article  ADS  Google Scholar 

  6. S.M. Nishigaki, Phys. Rev. E 59, 2853 (1999)

    Article  ADS  Google Scholar 

  7. L. Reichl,The transition to chaos: conservative classical systems and quantum manifestations (Springer Science and Business Media, 2013)

  8. H.A. Weidenmüller, G.E. Mitchell, Rev. Mod. Phys. 81, 539 (2009)

    Article  ADS  Google Scholar 

  9. T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey, S.S. Wong, Rev. Mod. Phys. 53, 385 (1981)

    Article  ADS  Google Scholar 

  10. F. Haake,Quantum signatures of chaos (Springer-Verlag, Heidelberg, 2010)

  11. O. Bohigas, M.-J. Giannoni, C. Schmit, Phys. Rev. Lett. 52, 1 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  12. S. Heusler, S. Müller, A. Altland, P. Braun, F. Haake, Phys. Rev. Lett. 98, 044103 (2007)

    Article  ADS  Google Scholar 

  13. M.V. Berry, M. Tabor, Proc. Roy. Soc. (London) A356, 375 (1977)

    ADS  Google Scholar 

  14. V. Oganesyan, D.A. Huse, Phys. Rev. B 75, 155111 (2007)

    Article  ADS  Google Scholar 

  15. C. Kollath, G. Roux, G. Biroli, A.M. Läuchli, J. Stat. Mech. 2010, P08011 (2010)

    Article  Google Scholar 

  16. M. Collura, H. Aufderheide, G. Roux, D. Karevski, Phys. Rev. A 86, 013615 (2012)

    Article  ADS  Google Scholar 

  17. O. Bohigas, J. Flores, Phys. Lett. B 34, 261 (1971)

    Article  ADS  Google Scholar 

  18. R.J. Leclair, R.U. Haq, V.K.B. Kota, N.D. Chavda, Phys. Lett. A 372, 4373 (2008)

    Article  ADS  Google Scholar 

  19. Y.Y. Atas, E. Bogomolny, O. Giraud, G. Roux, Phys. Rev. Lett. 110, 084101 (2013)

    Article  ADS  Google Scholar 

  20. V. Oganesyan, A. Pal, D.A. Huse, Phys. Rev. B 80, 115104 (2009)

    Article  ADS  Google Scholar 

  21. A. Pal, D.A. Huse, Phys. Rev. B 82, 174411 (2010)

    Article  ADS  Google Scholar 

  22. S. Iyer, V. Oganesyan, G. Refael, D.A. Huse, Phys. Rev. B 87, 134202 (2013)

    Article  ADS  Google Scholar 

  23. N.D. Chavda, V.K.B. Kota, Phys. Lett. A 377, 3009 (2013)

    Article  ADS  Google Scholar 

  24. S.K. Haldar, B. Chakrabarti, N.D. Chavda, T.K. Das, S. Canuto, V.K.B. Kota, Phys. Rev. A 89, 043607 (2014)

    Article  ADS  Google Scholar 

  25. G. Torres-Vargas, R. Fossion, J.A. Méndez-Bermúdez, Physica A 2019, 123298 (2019)

    Google Scholar 

  26. S. Harshini Tekur, S. Kumar, M.S. Santhanam, Phys. Rev. E 97, 062212 (2018)

    Article  ADS  Google Scholar 

  27. S. Harshini Tekur, Udaysinh T. Bhosale, M.S. Santhanam, Phys. Rev. B 98, 104305 (2018)

    Article  ADS  Google Scholar 

  28. P.B. Kahn, C.E. Porter, Nucl. Phys. 48, 385 (1963)

    Article  Google Scholar 

  29. A.Y. Abul-Magd, M.H. Simbel, Phys. Rev. E 60, 5371 (1999)

    Article  ADS  Google Scholar 

  30. A.Y. Abul-Magd, M.H. Simbel, Phys. Rev. E 62, 4792 (2000)

    Article  ADS  Google Scholar 

  31. S. Harshini Tekur, M.S. Santhanam, arXiv:1808.08541

  32. T. Guhr, H.A. Weidenmüller, Chem. Phys. 146, 21 (1990)

    Article  Google Scholar 

  33. L. Leviandier, M. Lombardi, R. Jost, J.P. Pique, Phys. Rev. Lett. 56, 2449 (1986)

    Article  ADS  Google Scholar 

  34. P.J. Brussaard, P.W.M. Glaudemans,Shell model applications in nuclear spectroscopy (North Holland, Amsterdam, 1977)

  35. F. Iachello, A. Arima,The interacting boson model (Cambridge University Press, Cambridge, 1987)

  36. V.K.B. Kota, R. Sahu,Structure of medium mass nuclei: deformed shell model and spin-isospin interacting boson model (CRC press, Taylor & Francis group, Boca Raton, FL, 2017)

  37. V.K.B. Kota,Embedded random matrix ensembles in quantum physics (Springer-Verlag, Heidelberg, 2014)

  38. V.K.B. Kota, N.D. Chavda, Int. J. Mod. Phys. E 27, 1830001 (2018)

    Article  ADS  Google Scholar 

  39. V.K.B. Kota, N.D. Chavda, Entropy 2018, 541 (2018)

    Article  ADS  Google Scholar 

  40. J.B. French, S.S.M. Wong, Phys. Lett. B 33, 449 (1970)

    Article  ADS  Google Scholar 

  41. V.K.B. Kota, Phys. Rep. 347, 223 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  42. H.A. Weidenmüller, G.E. Mitchell, Rev. Mod. Phys. 81, 539 (2009)

    Article  ADS  Google Scholar 

  43. J.M.G. Gomez, K. Kar, V.K.B. Kota, R.A. Molina, A. Relaño, J. Retamosa, Phys. Rep. 499, 103 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  44. M. Vyas, Ph.D. Thesis, M.S. University of Baroda, Vadodara, India, 2011, https://arxiv.org/abs/1710.08333 (2017)

  45. R.A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen, S. Sachdev, Phys. Rev. B 95, 155131 (2017)

    Article  ADS  Google Scholar 

  46. K.J. Bulycheva, J. High Energ. Phys. 12, 069 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  47. V. Rosenhaus, J. Phys. A 52, 323001 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  48. R.N. Mantegna, H.E. Stanley,An introduction to econophysics: correlations and complexity in finance (Cambridge University Press, UK, 2000)

  49. M. Wright, R. Weaver,New directions in linear acoustics and vibration: quantum chaos, random matrix theory and complexity (Cambridge University Press, New York, 2010)

  50. Z. Bai, J.W. Silverstein,Spectral analysis of large dimensional random matrices, 2nd ed. (Springer-Verlag, New York, 2010)

  51. P.J. Forrester,Log-gases and random matrices (Princeton University Press, USA, 2010)

  52. R. Couillet, M. Debbah,Random matrix methods for wireless communications (Cambridge University Press, New York, 2011)

  53. N.D. Chavda, H.N. Deota, V.K.B. Kota, Phys. Lett. A 378, 3012 (2014)

    Article  ADS  Google Scholar 

  54. F.J. Dyson, J. Math. Phys. 3, 140 (1962)

    Article  ADS  Google Scholar 

  55. F.J. Dyson, J. Math. Phys. 3, 157 (1962)

    Article  ADS  Google Scholar 

  56. F.J. Dyson, J. Math. Phys. 3, 166 (1962)

    Article  ADS  Google Scholar 

  57. J. Gunson, J. Math. Phys. 3, 752 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  58. V.K.B. Kota, N.D. Chavda, R. Sahu, Phys. Lett. A 359, 381 (2006)

    Article  ADS  Google Scholar 

  59. M. Vyas, V.K.B. Kota, N.D. Chavda, Phys. Rev. E 81, 036212 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  60. N.D. Chavda, V. Potbhare, V.K.B. Kota, Phys. Lett. A 311 331 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  61. N.D. Chavda, V.K.B. Kota, V. Potbhare, Phys. Lett. A 376, 2972 (2012)

    Article  ADS  Google Scholar 

  62. N.D. Chavda, V.K.B. Kota, Ann. Phys. (Berlin) 529, 1600287 (2017)

    Article  ADS  Google Scholar 

  63. M. Vyas, N.D. Chavda, V.K.B. Kota, V. Potbhare, J. Phys. A: Math. Theor. 45, 265203 (2012)

    Article  ADS  Google Scholar 

  64. H.N. Deota, N.D. Chavda, V.K.B. Kota, V. Potbhare, M. Vyas, Phys. Rev. E 88, 022130 (2013)

    Article  ADS  Google Scholar 

  65. J. Flores, M. Horoi, M. Müller, T.H. Seligman, Phys. Rev. E 63, 026204 (2001)

    Article  ADS  Google Scholar 

  66. G.E. Mitchell, E.G. Bilpuch, P.M. Endt, J.F. Shriner Jr., Phys. Rev. Lett. 61, 1473 (1988)

    Article  ADS  Google Scholar 

  67. J.F. Shriner Jr., C.A. Grossmann, G.E. Mitchell, Phys. Rev. C 62, 054305 (2000)

    Article  ADS  Google Scholar 

  68. J. Enders, T. Guhr, N. Huxel, P. von Neumann-Cosel, C. Rangacharyulu, A. Richter, Phys. Lett. B 486, 273 (2000)

    Article  ADS  Google Scholar 

  69. A.Y. Abul-Magd, H.L. Harney, M.H. Simbel, H.A. Weidenmüller, Ann. Phys. (N.Y.) 321, 560 (2006)

    Article  ADS  Google Scholar 

  70. A. Al-Sayed, A.Y. Abul-Magd, Phys. Rev. C 74, 037301 (2006)

    Article  ADS  Google Scholar 

  71. M.A. Jafarizadeh, N. Fouladi, H. Sabri, B.R. Maleki, Nucl. Phys. A 890, 29 (2012)

    Article  ADS  Google Scholar 

  72. H. Sabri, Nucl. Phys. A 941, 364 (2015)

    Article  ADS  Google Scholar 

  73. A. Heusler, R.V. Jolos, T. Faestermann, R. Hertenberger, H.-F. Wirth, P. von Brentano, Phys. Rev. C 93, 054321 (2016)

    Article  ADS  Google Scholar 

  74. L. Sá, P. Ribeiro, T. Prosen, Phys. Rev. X 10, 021019 (2020)

    Google Scholar 

  75. A.L. Corps, A. Relaño, Phys. Rev. E 101, 022222 (2020)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendrasinh D. Chavda.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, P., Vyas, M. & Chavda, N.D. Distribution of higher order spacing ratios in one- plus two-body random matrix ensembles with spin symmetry. Eur. Phys. J. Spec. Top. 229, 2603–2617 (2020). https://doi.org/10.1140/epjst/e2020-000145-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2020-000145-6

Navigation