Skip to main content
Log in

Generalized thermoviscoelastic novel model with different fractional derivatives and multi-phase-lags

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In the current investigation, we introduce a generalized modified model of thermoviscoelasticity with different fractional orders. Based on the Kelvin–Voigt model and generalized thermoelasticity theory with multi-phase-lags, the governing system equations are derived. In limited cases, the proposed model is reduced to several previous models in the presence and absence of fractional derivatives. The model is then adopted to investigate a problem of an isotropic spherical cavity, the inner surface of which is exposed to a time-dependent varying heat and constrained. The system of governing differential equations has been solved analytically by applying the technique of Laplace transform. To clarify the effects of the fractional-order and viscoelastic parameters, we depicted our numerical calculations in tables and figures. Finally, the results obtained are discussed in detail and also confirmed with those in the previous literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

This manuscript has associated data in a data repository. [Authors’ comment: All data generated or analysed during this study are included in this published article [and its supplementary information files].]

Abbreviations

μ 0, λ 0 :

Lame’s constants

μ v, λ v :

Thermoviscoelastic relaxation times

α t :

Thermal expansion coefficient

C e :

Specific heat

γ 0 = (3 λ 0 + 2 μ 0) α t :

Thermal coupling parameter

T 0 :

Environmental temperature

θ = T – T 0 :

Temperature increment

T:

Absolute temperature

\( \vec{u} \) :

Displacement vector

\( e = {\text{div}}\;\vec{u} \) :

Cubical dilatation

\( \sigma_{ij} \) :

Stress tensor

K :

Thermal conductivity

ρ :

Material density

Q :

Heat source

t :

The time

\( \delta_{ij} \) :

Kronecker’s delta function

\( \vec{E} \) :

Induced electric field

τ q :

Phase lag of heat flux

τ θ :

Phase lag of temperature

e ij :

Strain tensor

q :

Heat flux vector

References

  1. M. Biot, J. Appl. Phys. 27, 240 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  2. H. Lord, Y. Shulman, J. Mech. Phys. Solids 15, 299 (1967)

    Article  ADS  Google Scholar 

  3. A.E. Green, K.A. Lindsay, J. Elasticity 2, 1 (1972)

    Article  Google Scholar 

  4. A.E. Green, P.M. Naghdi, Proc. Roy. Soc. Lond. A 432, 171 (1991)

    Article  ADS  Google Scholar 

  5. A.E. Green, P.M. Naghdi, J. Elasticity 31, 189 (1993)

    Article  MathSciNet  Google Scholar 

  6. D.Y. Tzou, Annual Rev. Heat Transf. 4, 111 (1992)

    Article  Google Scholar 

  7. D.Y. Tzou, J. Heat Transf. 117, 8 (1995)

    Article  Google Scholar 

  8. D.Y. Tzou, Int. J. Heat Mass Transf. 38, 3231 (1995)

    Article  Google Scholar 

  9. D.S. Chandrasekharaiah, Appl. Mech. Rev. 51, 705 (1998)

    Article  ADS  Google Scholar 

  10. R.L. Bagley, P.J. Torvik, J. Rheol. 27, 201 (1983)

    Article  ADS  Google Scholar 

  11. R.C. Koeller, Trans. ASME-J. Appl. Mech. 51, 299 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  12. R. Huilgol, N. Phan-Thien, (Elsevier Amsterdam, 1997)

  13. A. A. Ilioushin, B. E. Pobedria, (Nauka Moscow, 970)

  14. K.K. Kalkal, S. Deswal, J. Mech. 30, 383 (2014)

    Article  Google Scholar 

  15. M. Kanoria, S.H. Mallik, Eur. J. Mech. A/Solid. 29, 695 (2010)

    Article  ADS  Google Scholar 

  16. Y.A. Rossikhin, Appl. Mech. Rev. 50, 15 (1997)

    Article  ADS  Google Scholar 

  17. I. Podlubny, Academic Press, (New York, 1999)

  18. K. S. Miller, B. Ross, (Wiley, New York, 1993)

  19. Y.Z. Povstenko, Mech. Res. Commun. 37, 436 (2010)

    Article  Google Scholar 

  20. H.H. Sherief, A.M.A. El-Sayed, A.M. Abd El-Latief, Int. J. Solids Struct. 47, 269 (2010)

    Article  Google Scholar 

  21. M.A. Ezzat, Phys. B 405, 4188 (2010)

    Article  ADS  Google Scholar 

  22. M.A. Ezzat, Phys. B 406, 30 (2011)

    Article  ADS  Google Scholar 

  23. G. Jumarie, Comput. Math Appl. 59, 1142 (2010)

    Article  MathSciNet  Google Scholar 

  24. A.S. El-Karamany, M.A. Ezzat, J. Therm. Stress. 34, 264 (2011)

    Article  Google Scholar 

  25. A.E. Abouelregal, Waves Random Complex Media (2019). https://doi.org/10.1080/17455030.2019.1628320

    Article  Google Scholar 

  26. A.E. Abouelregal, J. Appl. Comput. Mech. (2019). https://doi.org/10.22055/jacm.2019.29960.164

    Article  Google Scholar 

  27. A.E. Abouelregal, Mater. Res. Exp. (2019). https://doi.org/10.1088/2053-1591/ab447f

    Article  Google Scholar 

  28. A.E. Abouelregal, M.A. Elhagary, A. Soleiman, K.M. Khalil, Mech. Based Des. Struct. Mach. (2020). https://doi.org/10.1080/15397734.2020.1730189

    Article  Google Scholar 

  29. J.C. Mishra, S.C. Samanta, A.K. Chakrabarty, Int. J. Eng. Sci. 29, 1209 (1991). https://doi.org/10.1016/0020-7225(91)90025-x

    Article  Google Scholar 

  30. D.S. Mashat, A.M. Zenkour, A.E. Abouelregal, Int. J. Acoust. Vib. 22, 260 (2017)

    Google Scholar 

  31. G. Honig, U. Hirdes, J. Comput. Appl. Math. 10, 13 (1984)

    Article  Google Scholar 

  32. M.I.A. Othman, A.E. Abouelregal, Microsyst. Technol. 23, 5635 (2017)

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have made substantive contributions to the article and assume full responsibility for its content. The authors read and approved the final manuscript.

Corresponding author

Correspondence to A. Soleiman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleiman, A., Abouelregal, A.E., Khalil, K.M. et al. Generalized thermoviscoelastic novel model with different fractional derivatives and multi-phase-lags. Eur. Phys. J. Plus 135, 851 (2020). https://doi.org/10.1140/epjp/s13360-020-00842-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00842-6

Navigation