Skip to main content
Log in

Microscopic theory of pygmy- and giant resonances: accounting for complex 1p1h\(\otimes \)phonon configurations

  • Regular Article - Theoretical Physic
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The Green function formalism with a consistent account for phonon coupling (PC), based on the self-consistent theory of finite Fermi systems, is applied for pygmy- and giant multipole resonances in magic nuclei with the aim to consider particle–hole (ph) and complex 1p1h\(\otimes \)phonon configurations. A new equation for the effective field, which describes nuclear polarizability, is obtained. It contains new PC contributions, which are of interest in the energy region under consideration. They are due to: (1) the tadpole effect in the standard ph-propagator, (2) two new induced interactions (caused by the exchange of the ph-phonon) in the second ph-channel and in the particle–particle channels, and (3) the first and second variations of the effective interaction in the phonon field. The general expressions for energies and probabilities of transitions between the ground and excited states are obtained. The qualitative analysis and discussion of the new terms are performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data has been listed.]

Notes

  1. For a more exact derivation of the equation for the effective field with PC, it is necessary to refrain from the restriction to the complex 1p1h\(\otimes \)phonon configurations only. In this case, the general structure of the new equation will be similar to Eq. (16) and, what is important, all the new above-mentioned ingredients of our approach will remain the same.

References

  1. N. Paar, D. Vretenar, E. Khan, G. Colo, Rep. Prog. Phys. 70, 691 (2007)

    Article  ADS  Google Scholar 

  2. A. Bracco, E.G. Lanza, A. Tamii, Prog. Part. Nucl. Phys. 106, 360 (2019)

    Article  ADS  Google Scholar 

  3. S.P. Kamerdzhiev, O.I. Achakovskiy, S.V. Tolokonnikov, M.I. Shitov, Phys. At. Nucl. 82, 366 (2019)

    Article  Google Scholar 

  4. S. Kamerdzhiev, J. Speth, G. Tertychny, Phys. Rep. 393, 1 (2004)

    Article  ADS  Google Scholar 

  5. A. Avdeenkov, S. Goriely, S. Kamerdzhiev, S. Krewald, Phys. Rev. C 83, 064316 (2011)

    Article  ADS  Google Scholar 

  6. S. Goriely, E. Khan, V. Samyn, Nucl. Phys. A 739, 331 (2004)

    Article  ADS  Google Scholar 

  7. S.P. Kamerdzhiev, A.V. Avdeenkov, D.A. Voitenkov, Phys. At. Nucl. 74, 1478 (2011)

    Article  Google Scholar 

  8. V. Tselyaev, N. Lyutorovich, J. Speth, S. Krewald, P.-G. Reinhard, Phys. Rev. C 94, 034306 (2016)

    Article  ADS  Google Scholar 

  9. N.A. Lyutorovich, V.I. Tselyaev, O.I. Achakovskiy, S.P. Kamerdzhiev, JETP Lett. 107, 659 (2018)

    Article  ADS  Google Scholar 

  10. A. Repko, V.O. Nesterenko, J. Kvasil, P.-G. Reinhard, Eur. Phys. J. A 55, 242 (2019)

  11. A. Tamii, I. Poltoratska, P. von Neumann-Cosel, Y. Fujita, T. Adachi, C.A. Bertulani, J. Carter, M. Dozono, H. Fujita, K. Fujita, K. Hatanaka, D. Ishikawa, M. Itoh, T. Kawabata, Y. Kalmykov, A.M. Krumbholz, E. Litvinova, H. Matsubara, K. Nakanishi, R. Neveling, H. Okamura, H.J. Ong, B. Özel-Tashenov, V.Y. Ponomarev, A. Richter, B. Rubio, H. Sakaguchi, Y. Sakemi, Y. Sasamoto, Y. Shimbara, Y. Shimizu, F.D. Smit, T. Suzuki, Y. Tameshige, J. Wambach, R. Yamada, M. Yosoi, J. Zenihiro, Phys. Rev. Lett. 107, 062502 (2011)

    Article  ADS  Google Scholar 

  12. A.C. Larsen, J.E. Midtbø, M. Guttormsen, T. Renstrøm, S.N. Liddick, A. Spyrou, S. Karampagia, B.A. Brown, O. Achakovskiy, S. Kamerdzhiev, D.L. Bleuel, A. Couture, L. Crespo Campo, B.P. Crider, A.C. Dombos, R. Lewis, S. Mosby, F. Naqvi, G. Perdikakis, C.J. Prokop, S.J. Quinn, S. Siem, Phys. Rev. C 97, 054329 (2018)

  13. E.E. Saperstein, S.V. Tolokonnikov, Yad. Fiz. 79, 703 (2016) [Phys. At. Nucl. 79, 1030 (2016)]

  14. V.A. Khodel, E.E. Saperstein, Phys. Rep. 92, 183 (1982)

    Article  ADS  Google Scholar 

  15. A.V. Smirnov, S.V. Tolokonnikov, S.A. Fayans, Sov. J. Nucl. Phys. 48, 995 (1988)

    Google Scholar 

  16. D. Voitenkov, S. Kamerdzhiev, S. Krewald, E.E. Saperstein, S.V. Tolokonnikov, Phys. Rev. C 85, 054319 (2012)

    Article  ADS  Google Scholar 

  17. A.B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Nauka, Moscow, 1965)

    Google Scholar 

  18. A.B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Interscience, New York, 1967)

    Google Scholar 

  19. S.P. Kamerdzhiev, Yad. Fiz. 38, 316 (1983)

    Google Scholar 

  20. S.P. Kamerdzhiev, Sov. J. Nucl. Phys. 38, 188 (1989)

    Google Scholar 

  21. V.I. Tselyaev, Yad. Fiz. 50, 1252 (1989) [Sov. J. Nucl. Phys. 50, 780 (1989)]

  22. V. Tselyaev, Phys. Rev. C 75, 024306 (2007)

    Article  ADS  Google Scholar 

  23. S.P. Kamerdzhiev, V.N. Tkachev, Z. Phys. A 334, 19 (1989)

    ADS  Google Scholar 

  24. E. Litvinova, P. Schuck, Phys. Rev. C 102, 034310 (2020)

  25. V. Tselayev, N. Lyutorovich, J. Speth, P.-G. Reinhard, Phys. Rev. C 97, 044308 (2018)

    Article  ADS  Google Scholar 

  26. E. Litvinova, P. Schuck, Phys. Rev. C 100, 064320 (2019)

    Article  ADS  Google Scholar 

  27. V.G. Soloviev, Theory of Atomic Nuclei: Quasi-Particles and Phonons (Institute of Physics, Bristol, 1992)

    Google Scholar 

  28. N. Van Giai, C. Stoyanov, V.V. Voronov, Phys. Rev. C 57, 1204 (1998)

    Article  ADS  Google Scholar 

  29. V.A. Khodel, A.P. Platonov, E.E. Saperstein, J. Phys. G Nucl. Phys. 6, 1199 (1980)

    Article  ADS  Google Scholar 

  30. E.E. Saperstein, O.I. Achakovskiy, S.P. Kamerdzhiev, S. Krewald, J. Speth, S.V. Tolokonnikov, Phys. At. Nucl. 77, 1033 (2014)

    Article  Google Scholar 

  31. E.E. Saperstein, S.P. Kamerdzhiev, D.S. Krepish, S.V. Tolokonnikov, D. Voitenkov, J. Phys. G Nucl. Part. Phys. 44, 065104 (2017)

    Article  ADS  Google Scholar 

  32. S.P. Kamerdzhiev, D.A. Voitenkov, E.E. Saperstain, S.V. Tolokonnikov, M.I. Shitov, JETP Lett. 106(3), 139 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to V. A. Khodel, S. V. Tolokonnikov and V. I. Tselayev for useful discussions and to A. L. Barabanov, S. S. Pankratov and M. V. Zverev for discussions of selected problems. The reported study was funded by RFBR, project no. 19-31-90186 and supported by the Russian Science Foundation, project no. 16-12-10155.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Kamerdzhiev.

Additional information

Communicated by Michael Bender

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamerdzhiev, S.P., Shitov, M.I. Microscopic theory of pygmy- and giant resonances: accounting for complex 1p1h\(\otimes \)phonon configurations. Eur. Phys. J. A 56, 265 (2020). https://doi.org/10.1140/epja/s10050-020-00224-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00224-7

Navigation