Skip to main content
Log in

Lewis acid metal cations exchanged heteropoly salts as catalysts in β-pinene etherification

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this work, the protons of the Keggin heteropolyacids were exchanged by Lewis acid metal cations generating salts that were evaluated as catalysts on the β-pinene etherification with alkyl alcohols. The Fe(III) phosphotungstate salt (i.e. FePW12O40) was the most active and selective catalyst toward the formation of α-terpinyl methyl ether, the main reaction product. The activity of FePW12O40 catalyst was higher than their precursors of synthesis (i.e. H3PW12O40, Fe(NO3)3), other Fe(III) heteropoly salts (i.e. FePMo12O40 and Fe4/3SiW12O40), and heteropoly salts of different Lewis acids (i.e. AlPW12O40, Cu3(PW12O40)2). The effects of the main variables of reaction such as temperature, catalyst load, and alcohol nature were assessed. The Fe(III) cation, as well as the phosphotungstate anion, showed to be essential to the formation of the goal-product (α-terpinyl alkyl ether).

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558

    Article  CAS  Google Scholar 

  2. Salakhutdinov NF, Volcho KP, Yarovaya OI (2017) Monoterpenes as a renewable source of biologically active compounds. Pure Appl Chem 89:1105–1117

    Article  CAS  Google Scholar 

  3. Hensen K, Mahaim C, Holderich WF (1997) Alkoxylation of limonene and alpha-pinene over beta zeolite as heterogeneous catalyst. Appl Catal A 149:311–329

    Article  CAS  Google Scholar 

  4. da Silva MJ, Carari DM, da Silva AM (2015) Fe (III)-catalyzed α-terpinyl derivatives synthesis from β-pinene via reactions with hydrogen peroxide in alcoholic solutions. RSC Adv 5:10529–10536

    Article  Google Scholar 

  5. Besson M, Gallezot P, Pinel C (2013) Conversion of biomass into chemicals over metal catalysts. Chem Rev 114:1827–1870

    Article  Google Scholar 

  6. Catrinescu C, Fernandes C, Castilho P, Breen C (2015) Selective methoxylation of α-pinene to α-terpinyl methyl ether over Al3+ ion-exchanged clays. Appl Catal A 489:171–179

    Article  CAS  Google Scholar 

  7. Pito DS, Fonseca IM, Ramos AM, Vital J, Castanheiro JE (2009) Methoxylation of α-pinene over poly (vinyl alcohol) containing sulfonic acid groups. Chem Eng J 147:302–306

    Article  CAS  Google Scholar 

  8. Pito DS, Matos I, Fonseca IM, Ramos AM, Vital J, Castanheiro JE (2010) Methoxylation of α-pinene over heteropolyacids immobilized in silica. Appl Catal A 373:140–146

    Article  CAS  Google Scholar 

  9. da Silva MJ, Liberto NA (2016) Soluble and solid supported Keggin heteropolyacids as catalysts in reactions for biodiesel production: challenges and recent advances. Curr Org Chem 20:1263–1283

    Article  Google Scholar 

  10. Sugahara K, Kimura T, Kamata K, Yamaguchi K, Mizuno N (2012) A highly negatively charged γ-Keggin germanodecatungstate efficient for Knoevenagel condensation. Chem Commun 48:8422–8424

    Article  CAS  Google Scholar 

  11. da Silva MJ, de Oliveira CM (2018) Catalysis by Keggin heteropolyacid salts. Curr Catal 7:26–34

    Article  Google Scholar 

  12. Mizuno N, Misono M (1998) Heterogeneous catalysis. Chem Rev 98:199–218

    Article  CAS  Google Scholar 

  13. Polo HP, Lopes NPG, da Silva MJ (2019) Exploring the Keggin-Type Heteropolyacid-Catalyzed Reaction Pathways of the β-Pinene with Alkyl Alcohols. Catal Lett 149:2844–2853

    Article  CAS  Google Scholar 

  14. Caiado M, Machado A, Santos RN, Matos I, Fonseca IM, Ramos AM, Vital J, Valente AA, Castanheiro JE (2013) Alkoxylation of camphene over silica-occluded tungstophosphoric acid. Appl Catal A 451:36–42

    Article  CAS  Google Scholar 

  15. Matos I, Silva MF, Ruiz-Rosas R, Vital J, Rodriguez-Mirasol J, Cordero T, Castanheiro JE, Fonseca IM (2014) Methoxylation of α-pinene over mesoporous carbons and microporous carbons: A comparative study. Micropor Mesopor Mat 199:66–73

    Article  CAS  Google Scholar 

  16. Yadav JS, Reddy BVS, Narasimhulu G, Purnima KV (2009) FeCl3-catalyzed functionalization of monoterpenes via hydroalkylation of unactivated alkenes. Tetrahedron Lett 50:5783–5785

    Article  CAS  Google Scholar 

  17. da Silva MJ, Viana LAS, Teixeira MG (2020) SnBr 2-catalyzed highly selective synthesis of alkyl ethers from monoterpenes. C R Chimie. 23(1):93–103

    Google Scholar 

  18. Castanheiro JE, Fonseca IM, Ramos AM, Vital J (2017) Tungstophosphoric acid immobilised in SBA-15 as an efficient heterogeneous acid catalyst for the conversion of terpenes and free fatty acids. Micropor Mesopor Mat 249:16–24

    Article  CAS  Google Scholar 

  19. de Meireles ALP, Costa MS, Rocha KAS, Kozhevnikova EF, Kozhevnikov IV, Gusevskaya EV (2014) Heteropoly acid catalysts for the synthesis of fragrance compounds from biorenewables: The alkoxylation of monoterpenes. ChemCatChem. 6:2706–2711

    Article  Google Scholar 

  20. MJ Silva Da Lopes NPG1, Ferreira SO, da Silva RC, Natalino R, Chaves DM, Texeira MG, 2020 Monoterpenes etherification reactions with alkyl alcohols over cesium partially exchanged Keggin heteropoly salts: efects of catalyst composition Chem Papers. 35 10.1007/s11696-020-01288-x

  21. da Silva MJ, Vilanculo CB, Teixeira MG, Julio AA (2017) Catalysis of vegetable oil transesterification by Sn (II)-exchanged Keggin heteropolyacids: bifunctional solid acid catalysts. Reac Kinet Mech Catal 122:1011–1030

    Article  Google Scholar 

  22. da Silva MJ, Leles LCA, Natalino R, Ferreira SO, Coronel NC (2018) An efficient benzaldehyde oxidation by hydrogen peroxide over metal substituted lacunary potassium heteropolyacid Salts. Catal Lett 148:1202–1214

    Article  Google Scholar 

  23. Pizzio LR, Vázquez PG, Cáceres CV, Blanco MN (2003) Supported Keggin type heteropolycompounds for ecofriendly reactions. Appl Catal A 256:125–139

    Article  CAS  Google Scholar 

  24. da Silva MJ, Liberto NA, Leles LCA, Pereira UA (2016) Fe4(SiW12O40)3-catalyzed glycerol acetylation: Synthesis of bioadditives by using highly active Lewis acid catalyst. J Mol Catal A 422:69–83

    Article  Google Scholar 

  25. da Silva MJ, Leles LCA, Ferreira SO, da Silva RC, Viveiros KV, Chaves DM, Pinheiro PF (2019) A Rare Carbon Skeletal Oxidative Rearrangement of Camphene Catalyzed by Al-Exchanged Keggin Heteropolyacid Salts. ChemSelect 4:7665–7672

    Google Scholar 

  26. Shimizu K, Furukawa H, Kobayashi N, Itaya Y, Satsuma A (2009) Effects of Brønsted and Lewis acidities on activity and selectivity of heteropolyacid-based catalysts for hydrolysis of cellobiose and cellulose. Green Chem 11:1627–1632

    Article  CAS  Google Scholar 

  27. Pizzio LR, Vásquez PG, Cáceres CV, Blanco MN (2003) Supported Keggin type heteropolycompounds for ecofriendly reactions. Appl Catal A 256:125–139

    Article  CAS  Google Scholar 

  28. Kumar CR, Rao KTV, Prassad PSS, Lingaiah N (2011) Tin exchanged heteropoly tungstate: An efficient catalyst for benzylation of arenes with benzyl alcohol. J Mol Catal A 337:17–24

    Article  Google Scholar 

  29. Popa A, Sasca V, Bajuk-Bogdanovi D, Holclajtner-Antunovic I (2016) Synthesis, characterization and thermal stability of cobalt salts of Keggin-type heteropolyacids supported on mesoporous silica. J Therm Anal Calorim 126:1567–1577

    Article  CAS  Google Scholar 

  30. Shimizu KI, Niimi K, Satsuma A (2008) Polyvalent-metal salts of heteropolyacid as efficient heterogeneous catalysts for Friedel-Crafts acylation of arenes with carboxylic acids. Catal Commun 9:980–983

    Article  CAS  Google Scholar 

  31. Fournier M, Feumi-Jantou C, Rabia C, Herve G, Launay S (1992) Polyoxometalates catalyst materials: X-ray thermal stability study of phosphorus-containing heteropolyacids H3+ xPM12–xVxO40·13–14H2O (M= Mo, W; x= 0–1). J Mater Chem 2:971–978

    Article  CAS  Google Scholar 

  32. Almohalla M, Rodríguez-Ramos I, Guerrero-Ruiz A (2017) Comparative study of three heteropolyacids supported on carbon materials as catalysts for ethylene production from bioethanol. Catal Sci Technol 7:1892–1901

    Article  CAS  Google Scholar 

  33. Villabrille P, Romanelli G, Gassa L, Vazquez P, Caceres C (2007) Synthesis and characterization of Fe-and Cu-doped molybdovanadophosphoric acids and their application in catalytic oxidation. Appl Catal A Gen 324:69–76

    Article  CAS  Google Scholar 

  34. Frenzel RA, Romanelli GP, Pizzio LR (2018) Novel catalyst based on mono-and di-vanadium substituted Keggin polyoxometalate incorporated in poly (acrylic acid-co-acrylamide) polymer for the oxidation of sulfides. Mol Catal 457:8–16

    Article  CAS  Google Scholar 

  35. Timofeeva MN (2003) Acid catalysis by heteropoly acids. Appl Catal A 256:19–35

    Article  CAS  Google Scholar 

  36. Hensen K, Mahaim C, Hioderich WF (1997) Alkoxylation of limonene and alpha-pinene over beta zeolite as heterogeneous catalyst. Appl Catal A Gen 149:311–329

    Article  CAS  Google Scholar 

  37. da Silva MJ, Teixeira RR, Carari DM (2009) Pd(OAc)2/M(NO3)n (M= Cu (II), Fe (III); n= 2, 3): Kinetic investigations of an alternative Wacker system for the oxidation of natural olefins. J Organomet Chem 694:3254–3261

    Article  Google Scholar 

  38. Martins FP, Rodrigues FA, da Silva MJ (2018) Fe2(SO4)3-catalyzed levulinic acid esterification: production of fuel bioadditives. Energies 11:1263

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from CNPq and FAPEMIG (Brasil). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcio J. da Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1261 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, M.J., de Andrade Leles, L.C. & Teixeira, M.G. Lewis acid metal cations exchanged heteropoly salts as catalysts in β-pinene etherification. Reac Kinet Mech Cat 131, 875–887 (2020). https://doi.org/10.1007/s11144-020-01888-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01888-4

Keywords

Navigation