Skip to main content
Log in

Overexpression of CcNAC1 gene promotes early flowering and enhances drought tolerance of jute (Corchorus capsularis L.)

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Drought is the main factor that significantly affects plant growth and has devastating effects on crop production of jute. NAC (NAM, ATAF, and CUC2) transcription factors (TFs) are a large gene family in plants that have been shown to play many important roles in regulating developmental processes and abiotic stress resistance. In this study, a NAC transcription factor, CcNAC1, was cloned and characterized its function in jute. RT-qPCR analysis showed that CcNAC1 expression peaks after 8 h of drought stress. CcNAC1 overexpression and knockdown plants were created by Agrobacterium-mediated genetic transformation. PCR and southern hybridization results indicate that the CcNAC1 gene was integrated into the genome of jute. Overexpression of the CcNAC1 gene sped up the plant growth, promoted early flowering, and increased drought tolerance compared to the control plants. 3-Ketoacyl-CoA synthase (KCS) gene expression level increased significantly in the CcNAC1-overexpression plants and decreased in knockdown plants, which showed that CcNAC1 transcription factor regulated KCS gene expression. Yeast-2-Hybrid (Y2H) assays validated the physical interaction between CcNAC1 and KCS. The results provide relatively comprehensive information on the molecular mechanisms of CcNAC1 gene underlying the regulation of plant growth and drought stress resistance, and indicate that CcNAC1 acts as a positive regulator in drought tolerance in jute (Corchorus capsularis L.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • An X, Chen J, Zhang J, Liao Y, Dai L, Wang B, Liu L, Peng D (2015) Transcriptome profiling and identification of transcription factors in ramie (Boehmeria nivea L. gaud) in response to PEG treatment, using Illumina paired-end sequencing technology. Int J Mol Sci 16:3493–3511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ayodele VI, Fawusi MOA (1990) Studies on drought susceptibility of Corchorus olitorius L.: II. Effects of moisture stress at different physiological stages on vegetative growth and seed yield of C. olitorius cv. ‘Oniyaya’. Biotronics 19:33–37

    Google Scholar 

  • Bharadwaj P, Beena MR, Sinha MK, Kirti PB (2011) In vitro regeneration and optimization of conditions for Agrobacterium mediated transformation in jute, Corchorus capsularis. J Plant Biochem Biotechnol 20:39–46

    Google Scholar 

  • Buchanan Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Issizaki J, Leaver CJ (2010) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585

    Google Scholar 

  • Chen Y, Kelly EE, Masluk RP, Nelson C, Reilly P (2011) Structural classification and properties of ketoacyl synthases. Protein Sci 20:1659–1667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Wang YF, Lv B, Li J, Luo LQ, Lu SC, Zhang X, Ma H, Ming F (2014) The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway. Plant Cell Physiol 55:604–619

    CAS  PubMed  Google Scholar 

  • Chen X, Lu SC, Wang YF, Zhang X, Lv B, Luo LQ, Xi DD, Chen JB, Ma H, Ming F (2015) OsNAC2 encoding a NAC transcription factor that affects plant height through mediating the gibberellic acid pathway in rice. Plant J 82:302–314

    CAS  PubMed  Google Scholar 

  • Hao YJ, Wei W, Song QX, Chen HW, Zhang YQ (2011) Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J 68:302–313

    CAS  PubMed  Google Scholar 

  • Hong Y, Zhang H, Huang L, Li D, Song F (2016) Overexpression of a stress responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in Rice. Front Plant Sci 7:4

    PubMed  PubMed Central  Google Scholar 

  • Hossain MS, Ahmed R, Haque MS, Alam MM, Islam MS (2019) Identification and validation of reference genes for real-time quantitative RT-PCR analysis in jute. BMC Mol Biol 20:13. https://doi.org/10.1186/s12867-019-0130-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu H, Xiong L (2013) Genetic engineering and breeding of drought-resistant crops. Annu Rev Plant Biol 65:715–741

    PubMed  Google Scholar 

  • Hu HH, Dai MQ, Yao JL, Xiao BZ, Li XH, Zhang QF, Xiong LZ (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A 103:12987–12992

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu HH, You J, Fang YJ, Zhu XY, Qi ZY et al (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67:169–181

    CAS  PubMed  Google Scholar 

  • Huang L, Hong YB, Zhang HJ, Li DY, Song MF (2016) Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance. BMC Plant Biol 16:203

    PubMed  PubMed Central  Google Scholar 

  • Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Choi YD, Kim MY, Reuzeau C, Kim JK (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153:185–197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong JS, Kim YS, Redillas MC, Jang G, Jung H, Bang SW, Choi YD, Ha SH, Reuzeau C, Kim JK (2013) OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnol J 11:101–114

    CAS  PubMed  Google Scholar 

  • Jiang DG, Chen WT, Dong JF, Li J, Yang F, Wu ZC, Zhou H, Wang WS, Zhuang CX (2018) Overexpression of OsmiR164b-resistant OsNAC2 improves plant architecture and grain yield in rice. J Exp Bot 69:1533–1543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang DG, Zhou LY, Chen WT, Ye NH, Xia JX, Zhuang CX (2019) Overexpression of a microRNA-targeted NAC transcription factor improves drought and salt tolerance in rice via ABA-mediated pathways. Rice 12:76. https://doi.org/10.1186/s12284-019-0334-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Ju YL, Yue XF, Min Z, Wang XH, Fang YL, Zhang JX (2019) VvNAC17, a novel stress-responsive grapevine (Vitis vinifera L.) NAC transcription factor, increases sensitivity to abscisic acid and enhances salinity, freezing, and drought tolerance in transgenic Arabidopsis. Plant Physiol Biochem 146:98–111

    PubMed  Google Scholar 

  • Lan JS (1998) Comparison of evaluating methods for agronomic drought resistance in crops. Acta Agriculturae Boreali-occidentalis Sinica 7:85–87

    Google Scholar 

  • Lee SB, Jung SJ, Go YS, Kim HU, Cho HJ, Park OK, Suh MC (2009) Two Arabidopsis 3-ketoacyl CoA synthase genes, KCS20 and KCS2/DAISY, are functionally redundant in cuticular wax and root suberin biosynthesis, but differentially controlled by osmotic stress. Plant J 60:462–475

    CAS  PubMed  Google Scholar 

  • Lee DK, Chung PJ, Jeong JS, Jang G, Bang SW, Jung H, Kim YS, Ha SH, Choi YD, Kim JK (2017) The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnol J 15:754–764

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Yang J, Dou JH, Wu LY, Chen P, Zhou Q, Mo LY, He B, Fan ZL, Zhou RY (2013) Physiological response and drought-resistance evaluation of jute seedling under drought stress. Southwest China J Agric Sci 26:125–130

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Mao CZ, Ding WN, Wu YN, Yu J, He XW, Shou HX, Wu P (2007) Overexpression of a NAC-domain protein promotes shoot branching in rice. New Phytol 176:288–298

  • Mao X, Zhang H, Qian X, Li A, Zhao G, Jing R (2012) TaNAC2, a NAC-typewheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. J Exp Bot 63:2933–2946

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mao CJ, Lu SC, Lv B, Zhang B, Shen JB, He JM, Luo LQ, Xi DD, Chen X, Ming F (2017) A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis. Plant Physiol 174:1747–1763

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meng CM, Cai CP, Zhang TZ, Guo WZ (2009) Characterization of six novelNAC genes and their responses to abiotic stresses in Gossypium hirsutum L. Plant Sci 176:352–359

    CAS  Google Scholar 

  • Mitra GC, Basu NC (1974) Studies on the size and distribution of stomata in jute (Corchorus olitorius and Corchorus capsularis) and its bearing on resistance to drought. Acta Agron Budap 2013:192–199

    Google Scholar 

  • Peng H, Cheng HY, Chen C, Yu XW, Yang JN, Gao WR, Shi QH, Zhang H, Li JG, Ma H (2009) A NAC transcription factor gene of Chickpea (Cicer arietinum), CarNAC3, is involved in drought stress response and various developmental processes. J Plant Physiol 166:1934–1945

    CAS  PubMed  Google Scholar 

  • Pil JS, Saet BL, Mi CS, Mi JP, Young SG, Chung MP (2011) The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell 23:1138–1152

    Google Scholar 

  • Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17:369–381

    CAS  PubMed  Google Scholar 

  • Redillas MC, Jeong JS, Kim YS, Jung H, Bang SW, Choi YD, Ha SW, Reuzeau C, Kim J (2012) The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol J 10:792–805

    CAS  PubMed  Google Scholar 

  • Saada AS, Li X, Li HP, Huang T, Gao CS, Guo MW, Cheng W, Zhao GY, Liao YC (2013) A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses. Plant Sci 203–204:33–40

    Google Scholar 

  • Sanz P, Viana R, Garcia-Gimeno MA (2018) AMPK protein interaction analyses by yeast two-hybrid. Methods Mol Biol 1732:143–157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shang XG, Yu YJ, Zhu LJ, Liu HQ, Chai QC, Guo WZ (2020) A cotton NAC transcription factor GhirNAC2 plays positive roles in drought tolerance via regulating ABA biosynthesis. Plant Sci 296:110498

    CAS  PubMed  Google Scholar 

  • Su JG, Dai ZG (2017) Germplasm resources and main characters of hemp crops in China. Chinese agricultural press

  • Todd J, Jaworski J (1999) KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J 17:119–130

    CAS  PubMed  Google Scholar 

  • Tresch S, Heilmann M, Christiansen N, Looser R, Grossmann K (2012) Inhibition of saturatedvery-long-chain fatty acid biosynthesis by mefluidide and perfluidone, selective inhibitors of 3-ketoacyl-CoA synthases. Phytochemistry 76:162–171

    CAS  PubMed  Google Scholar 

  • Wu A, Allu AD, Garapati P, Siddiqui H, Dortay H, Zanor MI, Asensi-Fabado MA, Munné-Bosch S, Antonio C, Tohge T, Fernie AR, Kaufmann K, Xue GP, Mueller-Roeber B, Balazadeh S (2012) JUNGBRUNNEN1, a reactive oxygen species–responsive NAC transcriptionfactor, regulates longevity in Arabidopsis. Plant Cell 24:482–506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie LN, Chen M, Min DH, Feng L, Xu ZS, Zhou YB, Xu DB, Li LC, Ma YZ, Zhng XH (2017) The NAC-like transcription factor, SiNAC110, in foxtail millet (Setaria italica, L.) confers tolerance to drought and high salt stress through an ABA independent signaling pathway. J Integr Agric 16:559–571

    CAS  Google Scholar 

  • Yamaguchi M, Ohtani M, Mitsuda N, Kubo M, Ohmetakagi M, Fukuda H, Demura T (2010) VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis. Plant Cell 22:1249–1263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao YF, Hong JJ, Zeng RQ, Yang YX (2013) Drought resistance of various jutes (Corchorus L.) in seedling under PEG stress. Fujian J Agric Sci 28:457–562

    CAS  Google Scholar 

  • Yuan X, Wang H, Cai JT, Bi Y, Li DY, Song FM (2019) Rice NAC transcription factor ONAC066 functions as a positive regulator of drought and oxidative stress response. BMC Plant Biol 19:278. https://doi.org/10.1186/s12870-019-1883-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang GY, Zhang YJ, Xu JT, Niu XP, Qi JM, Tao AF, Zhang LW, Fang PP, Lin LH, Su JG (2014) The CCoAOMT1 gene from jute (Corchorus capsularis l.) is involved in lignin biosynthesis in Arabidopsis thaliana. Gene 546:398–402

    CAS  PubMed  Google Scholar 

  • Zhang GY, Shan SL, Deng JL, Deng HG, Huang SQ, Li DF (2018) The segregation and functional identification of jute β-ketoyl-CoA synthase gene (KCS). Mol Plant Breed 20:6718–6722

    Google Scholar 

Download references

Acknowledgments

We would like to deeply thank Jiantang Xu for their constructive guidance and discussions, and Jie Chen for valuable proofreading and language-polishing services.

Funding

This work was supported by grants from the National Science Foundation of China (grant no. 31860396) in the design of the study and data collection and the Key Laboratory of Fiber Biology of the Chinese Academy of Agricultural Sciences (grant number 201602) and the Science and Technology Project of the Education Department of Jiangxi Province (grant nos. GJJ161047 and GJJ180890) for the analysis and interpretation of data and preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

GY, SS, and DF conceived the research plan, analyzed the data, and wrote the manuscript. ZC, JL, and YW analyzed the function of NAC1. JM and SL did the qPCR and vector construction. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Defang Li or Jianmin Qi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Néstor Carrillo

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(JPG 1783 kb)

ESM 2

(DOCX 15 kb)

ESM 3

(XLSX 21 kb)

ESM 4

(PNG 36 kb)

ESM 5

(PNG 77 kb)

ESM 6

(JPG 11 kb)

ESM 7

(JPG 55 kb)

ESM 8

(JPG 1890 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Huang, S., Zhang, C. et al. Overexpression of CcNAC1 gene promotes early flowering and enhances drought tolerance of jute (Corchorus capsularis L.). Protoplasma 258, 337–345 (2021). https://doi.org/10.1007/s00709-020-01569-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-020-01569-y

Keywords

Navigation