Skip to main content
Log in

MHD Simulation of Physical Processes in Spherical Plasma-Focus Chambers with Allowance for Neutron Generation

  • PLASMA DYNAMICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The results of the development of a two-dimensional MHD code for carrying out computational studies of the dynamics of plasma current sheath in spherical chambers with a plasma focus are presented. Equations of magnetohydrodynamics with allowance for magnetic field diffusion, thermal conductivity and plasma radiation are used in this work. An implicit scheme is used in the calculation of the magnetic field, which makes it possible to describe the motion of plasma in a low-density region behind the plasma sheath. The formulas that take into account the possible appearance of anomalous resistance in the plasma are used to calculate the plasma conductivity. The neutron yield is calculated with allowance for thermonuclear and beam–target neutron generation mechanisms. The effect of the minimum residual gas density behind the plasma sheath on the cumulation of the plasma sheath is studied. The effects of magnetic field diffusion, thermal conductivity and anomalous plasma resistance on the plasma sheath dynamics are considered. The calculations are performed for two spherical plasma-focus chambers operating with currents up to 1 and 2 MA and neutron yields to 1012 and 1.5 × 1013 DT neutrons, respectively. The comparison of the calculated dependences with experimental data on the current, voltage and neutron yield made it possible to refine the parameters used in the calculations and achieve a satisfactory agreement between the simulation and experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. N. V. Filippov, T. I. Filippova, and V. P. Vinogradov, Nucl. Fusion, Suppl., Part 2, 577 (1962).

  2. J. W. Mather, Phys. Fluids Suppl. 7, 5 (1964).

  3. N. G. Makeev, V. G. Rumyantsev, and V. V. Maslov, in Encyclopedia of Low-Temperature Plasma, Ed. by V. E. Fortov, Ser. B, Vol. IX-3: Radiative Plasma Dynamics: Physics, Experimental Technologies, and Applications, Ed. by V. A. Gribkov (Yanus-K, Moscow, 2007), p. 176 [in Russian].

  4. N. G. Makeev, V. G. Rumyantsev, and G. N. Cheremukhin, in Physics and Technology of Ionizing Radiation Pulsed Sources for Studying Fast Processes, Ed. by N. G. Makeev (Russian Federal Nuclear Center All-Russian Research Institute of Experimental Physics, Sarov, 1996), p. 281 [in Russian].

  5. F. V. D’yachenko and V. S. Imshennik, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1980), Vol. 8, p. 199.

    Google Scholar 

  6. V. V. Vikhrev and S. I. Braginskii, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1986), Vol. 10, p. 425.

    Google Scholar 

  7. D. Ryutov, M. Derzon, and M. Matzen, Rev. Mod. Phys. 72, 167 (2000).

    Article  ADS  Google Scholar 

  8. M. G. Haines, Plasma Phys. Control. Fusion 53, 093001 (2011). https://doi.org/10.1088/0741-3335/53/9/093001

  9. B. A. Trubnikov and S. K. Zhdanov, JETP Lett. 41, 358 (1985).

    ADS  Google Scholar 

  10. S. K. Zhdanov and B. A. Trubnikov, Sov. Phys.–JETP 63, 809 (1986).

    Google Scholar 

  11. S. F. Garanin and Yu. D. Chernyshev, Sov. J. Plasma Phys. 13, 562 (1987).

    Google Scholar 

  12. S. F. Garanin, Physical Processes in the MAGO-MTF Systems (LA-UR-13-29094, Los Alamos, 2013).

  13. V. V. Vikhrev, Sov. J. Plasma Phys. 12, 262 (1986).

    Google Scholar 

  14. B. A. Trubnikov Sov. J. Plasma Phys. 12, 271 (1986).

    Google Scholar 

  15. V. V. Yan’kov, Sov. J. Plasma Phys. 17, 305 (1991).

    Google Scholar 

  16. A. V. Batyunin, A. N. Bulatov, V. D. Vikharev, G. S. Volkov, V. I. Zaitsev, S. V. Zakharov, S. A. Komarov, S. L. Nedoseev, L. B. Nikandrov, G. M. Oleinik, V. P. Smirnov, S. V. Trofimov, E. G. Utyugov, M. V. Fedulov, I. N. Frolov, et al., Sov. J. Plasma Phys. 16, 597 (1990).

    Google Scholar 

  17. D. Klir, J. Kravarik, P. Kubes, K. Rezac, J. Cikhardt, E. Litseva, T. Hyhlik, S. S. Ananev, Yu. L. Bakshaev, V. A. Bryzgunov, A. S. Chernenko, Yu. G. Kalinin, E. D. Kazakov, V. D. Korolev, G. I. Ustroev, et al., Plasma Phys. Control. Fusion 52, 065013 (2010). https://doi.org/10.1088/0741-3335/52/6/065013

  18. S. Lee and A. Serban, IEEE Trans. Plasma Sci. 24, 1101 (1996).

    Article  ADS  Google Scholar 

  19. Yu. V. Mikhailov, B. D. Lemeshko, and I. A. Prokuratov, Plasma Phys. Rep. 45, 334 (2019).

    Article  ADS  Google Scholar 

  20. V. A. Gribkov, A. Banaszak, B. Bienkowska, A. V. Dubrovsky, I. Ivanova-Stadnik, L. Jakubowski, L. Karpinski, R. A. Miklaszewski, M. Paduch, M. J. Sadowski, M. Scholz, A. Szydlowski, and K. Tomaszewski, J. Phys. D: Appl. Phys. 40, 1088 (2007). https://doi.org/10.1088/0022-3727/40/008

    Article  Google Scholar 

  21. V. E. Ablesimov, Yu. N. Dolin, O. V. Pashko, and Z. S. Tsibikov, Plasma Phys. Rep. 36, 403 (2010).

    Article  ADS  Google Scholar 

  22. V. V. Vikhrev and A. D. Mironenko-Marenkov, Plasma Phys. Rep. 38, 225 (2012).

    Article  ADS  Google Scholar 

  23. D. Klir, J. Kravarik, P. Kubes, K. Rezac, S. S. Anan’ev, Yu. L. Bakshaev, P. I. Blinov, A. S. Chernenko, E. D. Kazakov, V. D. Korolev, B. R. Meshcherov, G. I. Ustroev, L. Juha, J. Krasa, and A. Velyhan, Phys. Plasmas 15, 032701 (2008). https://doi.org/10.1063/1.2839352

  24. D. Klir, A. V. Shishlov, V. A. Kokshenev, P. Kubes, K. Rezac, R. K. Cherdizov, J. Cikhardt, B. Cikhardtova, G. N. Dudkin, F. I. Fursov, T. Hyhlik, J. Kaufman, B. M. Kovalchuk, J. Krasa, J. Kravarik, et al., New J. Phys. 20, 053064 (2018).

  25. D. Klir, S. L. Jackson, A. V. Shishlov, V. A. Kokshenev, K. Rezac, A. R. Beresnyak, R. K. Cherdizov, J. Cikhardt, B. Cikhardtova, G. N. Dudkin, J. T. Engelbrecht, F. I. Fursov, J. Krasa, J. Kravarik, P. Kubes, et al., Matter Radiat. Extremes 5, 026401 (2020). https://doi.org/10.1063/1.5132845

  26. D. E. Potter, Phys. Fluids 14, 1911 (1971).

    Article  ADS  Google Scholar 

  27. D. T. Offerman, D. R. Welch, D. V. Rose, C. Thoma, R. E. Clark, C. B. Mostrom, A. E. W. Schmidt, and A. J. Link, Phys. Rev. Lett. 116, 195001 (2016).

  28. N. Bennett, M. Blasco, K. Breeding, D. Constantino, A. DeYoung, V. DiPuccio, J. Friedman, B. Gall, S. Gardner, J. Gatling, E. C. Hagen, A. Luttman, B. T. Meehan, M. Misch, S. Molnar, et al., Phys. Plasmas 24, 012702 (2017).

  29. S. F. Garanin and V. I. Mamyshev, Plasma Phys. Rep. 34, 639 (2008).

    Article  ADS  Google Scholar 

  30. S. I. Braginskii, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1, p. 205.

    Google Scholar 

  31. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 2008; Dover, New York, 2002).

  32. R. C. Davidson and N. T. Gladd, Phys. Fluids 18, 1327 (1975).

    Article  ADS  Google Scholar 

  33. B. A. Trubnikov, Plasma Theory (Energoatomizdat, Moscow, 1996) [in Russian].

    Google Scholar 

  34. V. Yu. Dolinskii, S. F. Garanin, V. I. Mamyshev, N. G. Makeev, and Yu. S. Shigaev, in Proceedings of the 6th Euro–Asian Pulsed Power Conference (with the 21st International Conference on High Power Particle Beams and the 15th International Conference on Megagauss Magnetic Field Generation and Related Topics), Estoril,2016, p. 226.

  35. S. F. Garanin, V. Yu. Dolinskii, V. I. Mamyshev, N. G. Makeev, and Yu. S. Shigaev, in XLIV International Zvenigorod Conference on Plasma Physics and Controlled Fusion, Zvenigorod,2017, Book of Abstracts, p. 162.

  36. N. V. Zav’yalov, V. V. Maslov, V. G. Rumyantsev, I. Yu. Drozdov, D. A. Ershov, D. A. Molodtsev, V. I. Smerdov, A. P. Falin, and A. A. Yukhimchuk, Plasma Phys. Rep. 39, 243 (2013).

    Article  ADS  Google Scholar 

  37. S. V. Lebedev, A. Frank, and D. D. Ryutov, Rev. Mod. Phys. 91, 025002 (2019).

  38. M. Sohradi, A. Zarinshad, and M. Habibi, Sci. Rep. 6, 38843 (2016). https://doi.org/10.1038/srep38843

    Article  ADS  Google Scholar 

  39. H. Ito, Y. Nishino, and K. Masugata, J. Korean Phys. Soc. 59, 3674 (2011).

    Article  Google Scholar 

  40. V. Yu. Dolinskii, D. A. Ershov, A. P. Falin, S. F. Garanin, A. V. Garin, O. N. Petrushin, and Yu. S. Shigaev, in Proceedings of the 16th International Conference on Megagauss Magnetic Field Generation and Related Topics, Kashiwa,2018, p. 131.

  41. S. F. Garanin, A. V. Garin, V. Yu. Dolinskii, D. A. Ershov, O. N. Petrushin, A. P. Falin, and Yu. S. Shigaev, in XLVI International Zvenigorod Conference on Plasma Physics and Controlled Fusion, Zvenigorod,2019, Book of Abstracts, p. 122.

  42. P. V. Sasorov, Plasma Phys. Rep. 16, 716 (1990).

    Google Scholar 

  43. S. F. Garanin and V. I. Mamyshev, Plasma Phys. Rep. 16, 706 (1990).

    Google Scholar 

  44. S. S. Ananyev and S. V. Suslin, Fusion Eng. Des. 137, 338 (2018). https://doi.org/10.1016/j.fusengdes.2018.10.008

    Article  Google Scholar 

  45. S. F. Garanin, A. M. Buyko, and V. B. Yakubov, J. Appl. Mech. Tech. Phys. 58 (5), 779 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  46. H. Liskien and A. Paulsen, Nucl. Data Tables, No. 11, 569 (1973).

    Article  ADS  Google Scholar 

  47. O. I. Volchenko, I. G. Zhidov, E. E. Meshkov, and V. G. Rogachev, Sov. Tech. Phys. Lett. 15, 19 (1989).

    Google Scholar 

  48. Yu. V. Yanilkin, V. P. Statsenko, and V. I. Kozlov, Mathematical Modeling of Turbulent Mixing in Compressible Mediums (Russian Federal Nuclear Center All-Russian Research Institute of Experimental Physics, Sarov, 2009) [in Russian].

  49. N. G. Makeev, V. G. Rumyantsev, and G. N. Cheremukhin, in Physics and Technology of Ionizing Radiation Pulsed Sources for Studying Fast Processes, Ed. by N. G. Makeev (Russian Federal Nuclear Center All-Russian Research Institute of Experimental Physics, Sarov, 1996), p. 297 [in Russian].

  50. V. V. Bragin, V. V. Glushikhin, V. I. Golubev, V. M. Gorbachev, V. V. Gorbunov, V. M. Kuznetsov, N. G. Makeev, E. S. Pashchenko, N. V. Rubtsov, A. A. Spirin, O. K. Surskii, P. L. Usenko, V. A. Tsukerman, and G. N. Cheremukhin, Vopr. At. Nauki Tekh., Ser.: Fiz. Yad. Reakt., Spets. Vyp. TIYaS-XI, 153 (1997).

  51. EXFOR: Experimental Nuclear Reaction Data. https://www-nds.iaea.org/EXFOR/C0004.006. Cited November 22, 2019.

  52. S. Glasstone and R. H. Lovberg, Controlled Thermonuclear Reactions (Van Nostrand, New York, 1960), Chap. 2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Garanin.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garanin, S.F., Dolinskii, V.Y., Makeev, N.G. et al. MHD Simulation of Physical Processes in Spherical Plasma-Focus Chambers with Allowance for Neutron Generation. Plasma Phys. Rep. 46, 978–991 (2020). https://doi.org/10.1134/S1063780X20100037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20100037

Keywords:

Navigation