Skip to main content
Log in

Suppression of Transverse Parasitic Oscillation in Fe:ZnSe and Fe:ZnS Lasers Based on Polycrystalline Active Elements: A Review

  • LASER RADIATION AND ITS APPLICATION
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract—

The methods for suppressing transverse parasitic oscillation (TPO) at room temperature in Fe:ZnSe and Fe:ZnS lasers based on polycrystals doped using high-temperature diffusion have been considered. When active elements of this type are used, the development of TPO at large pump spots is due to the high dopant concentration on the surface of element end face and small length of the active medium as a whole (i.e., typical disk laser geometry). The TPO suppression methods under consideration are based on the fact that undoped Fe:ZnSe and Fe:ZnS exhibit significant absorption at the corresponding lasing wavelengths. Thus, the TPO development can be excluded by simple increase in the transverse size of active element and growth of active elements with several inner doped layers or an inner doped layer (layers) in the form of a meniscus. The problems of damage of active elements at large pump spots are discussed, and the potential of further increase in the radiation energy of Fe:ZnSe and Fe:ZnS lasers with room-temperature active elements is predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. J. J. Adams, C. Bibeau, R. H. Page, D. M. Krol, L. H. Furu, and S. A. Payne, “4.0–4.5-μm lasing of Fe:ZnSe below 180 K, a new mid-infrared laser material,” Opt. Lett. 24 (23), 1720–1722 (1999). https://doi.org/10.1364/OL.24.001720

    Article  ADS  Google Scholar 

  2. J. Kernal, V. V. Fedorov, A. Gallian, S. B. Mirov, and V. V. Badikov, “3.9–4.8 µm gain-switched lasing of Fe:ZnSe at room temperature,” Opt. Express. 13 (26), 10608–10615 (2005). https://doi.org/10.1364/OPEX.13.010608

    Article  ADS  Google Scholar 

  3. V. A. Akimov, A. A. Voronov, V. I. Kozlovskii, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar’kov, and M. P. Frolov, “Efficient lasing in a Fe2+:ZnSe crystal at room temperature,” Quantum Electron. 36 (4), 299–301 (2006). https://doi.org/10.1070/QE2006v036n04ABEH013139

    Article  ADS  Google Scholar 

  4. N. N. Il’ichev, V. P. Danilov, V. P. Kalinushkin, M. I. Studenikin, P. V. Shapkin, and A. S. Nasibov, “Superluminescent room-temperature Fe2+:ZnSe IR radiation source,” Quantum Electron. 38 (2), 95–96 (2008). https://doi.org/10.1070/QE2008v038n02ABEH013786

    Article  Google Scholar 

  5. M. E. Doroshenko, H. Jelinková, P. Koranda, J. Šulc, T. T. Basiev, V. V. Osiko, V. K. Komar, A. S. Gerasimenko, V. M. Puzikov, V. V. Badikov, and D. V. Badikov, “Tunable mid-infrared laser properties of Cr2+:ZnMgSe and Fe2+:ZnSe crystals,” Laser Phys. Lett. 7 (1), 38–45 (2010). https://doi.org/10.1002/lapl.200910111

    Article  ADS  Google Scholar 

  6. NoSoung Myoung, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Energy scaling of 4.3 μm room temperature Fe:ZnSe laser,” Opt. Lett. 36 (1), 94–96 (2011). https://doi.org/10.1364/OL.36.000094

    Article  ADS  Google Scholar 

  7. M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, V. V. Mislavskii, Yu. P. Podmar’kov, S. A. Savinova, and Ya. K. Skasyrsky, “Study of a 2-J pulsed Fe:ZnSe 4-μm laser,” Laser Phys. Lett. 10 (12), 125001 (2013). https://doi.org/10.1088/1612-2011/10/12/125001

    Article  ADS  Google Scholar 

  8. S. D. Velikanov, V. P. Danilov, N. G. Zakharov, N. N. Il’ichev, S. Yu. Kazantsev, V. P. Kalinushkin, I. G. Kononov, A. S. Nasibov, M. I. Studenikin, P. P. Pashinin, K. N. Firsov, P. V. Shapkin, and V. V. Shchurov, “Fe2+:ZnSe laser pumped by a nonchain electric-discharge HF laser at room temperature,” Quantum Electron. 44 (2), 141–145 (2014). https://doi.org/10.1070/QE2014v044n02ABEH015341

    Article  ADS  Google Scholar 

  9. E. M. Gavrishchuk, S. Yu. Kazantsev, I. G. Kononov, S. A. Rodin, and K. N. Firsov, “Room-temperature high-energy Fe2+:ZnSe laser,” Quantum Electron. 44 (6), 505–506 (2014). https://doi.org/10.1070/QE2014v044n06ABEH015503

    Article  ADS  Google Scholar 

  10. K. N. Firsov, E. M. Gavrishchuk, S. Yu. Kazantsev, I. G. Kononov, and S. A. Rodin, “Increasing the radiation energy of ZnSe:Fe2+ laser at room temperature,” Laser Phys. Lett.11 (5), 085001 (2014). https://doi.org/10.1088/1612-2011/11/8/085001

    Article  ADS  Google Scholar 

  11. K. N. Firsov, E. M. Gavrishchuk, S. Yu. Kazantsev, I. G. Kononov, A. A. Maneshkin, G. M. Mishchenko, S. M. Nefedov, S. A. Rodin, S. D. Velikanov, I. M. Yutkin, N. A. Zaretsky, and E. A. Zotov, “Spectral and temporal characteristics of a ZnSe:Fe2+ laser pumped by a non-chain HF(DF) laser at room temperature,” Laser Phys. Lett. 11 (12), 125004 (2014). https://doi.org/10.1088/1612-2011/11/12/125004

    Article  ADS  Google Scholar 

  12. S. D. Velikanov, N. A. Zaretskiy, E. A. Zotov, V. I. Kozlovsky, Yu. V. Korostelin, O. N. Krokhin, A. A. Maneshkin, Yu. P. Podmar’kov, S. A. Savinova, Ya. K. Skasyrsky, M. P. Frolov, R. S. Chuvatkin, and I. M. Yutkin, “Investigation of Fe:ZnSe laser in pulsed and repetitively pulsed regimes,” Quantum Electron. 45 (1), 1–7 (2015). https://doi.org/10.1070/QE2015v045n01ABEH015644

    Article  ADS  Google Scholar 

  13. J. W. Evans, P. A. Berry, and K. L. Schepler, “840 mW continuous-wave Fe:ZnSe laser operating at 4140 nm,” Opt. Lett. 37 (23), 5021–5023 (2012). https://doi.org/10.1364/ol.37.005021

    Article  ADS  Google Scholar 

  14. M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, and Ya. K. Skasyrsky, “Study of a room temperature, monocrystalline Fe:ZnSe laser, pumped by a high-energy, free-running Er:YAG laser,” Laser Phys.29 (8), 085004 (2019). https://doi.org/10.1088/1555-6611/ab2be3

    Article  ADS  Google Scholar 

  15. K. N. Firsov, M. P. Frolov, E. M. Gavrishchuk, S. Yu. Kazantsev, I. G. Kononov, Yu. V. Korostelin, A. A. Maneshkin, S. D. Velikanov, I. M. Yutkin, N. A. Zaretsky, and E. A. Zotov, “Laser on single-crystal ZnSe:Fe2+ with high pulse radiation energy at room temperature,” Laser Phys. Lett. 13 (1), 015002 (2016). https://doi.org/10.1088/1612-2011/13/1/015002

    Article  ADS  Google Scholar 

  16. K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, D. V. Savin, and N. A. Timofeeva, “Room-temperature laser on a ZnSe:Fe2+ polycrystal with undoped faces, excited by an electrodischarge HF laser,” Laser Phys. Lett. 13 (5), 055002 (2016). https://doi.org/10.1088/1612-2011/13/5/055002

    Article  ADS  Google Scholar 

  17. E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, S. A. Rodin, D. V. Savin, N. A. Timofeeva, and K. N. Firsov, “Scaling of energy characteristics of polycrystalline Fe2+:ZnSe laser at room temperature,” Quantum Electron. 45 (9), 823–827 (2015). https://doi.org/10.1070/QE2015v045n09ABEH015845

    Article  ADS  Google Scholar 

  18. S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “High average power Fe:ZnSe and Cr:ZnSe mid-IR solid state lasers,” in Proceedings Advanced Solid State Lasers (Berlin, Germany, October 4–9, 2015), AW4A.1. https://doi.org/10.1364/ASSL.2015.AW4A.1

  19. S. D. Velikanov, N. A. Zaretsky, E. A. Zotov, S. Yu. Kazantsev, I. G. Kononov, Yu. V. Korostelin, A. A. Maneshkin, K. N. Firsov, M. P. Frolov, and I. M. Yutkin, “Room-temperature 1.2-J Fe2+:ZnSe laser,” Quantum Electron. 46 (1), 11–12 (2016). https://doi.org/10.1070/QE2016v046n01ABEH015940

    Article  ADS  Google Scholar 

  20. S. D. Velikanov, E. M. Gavrishchuk, N. A. Zaretsky, A. V. Zakhryapa, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, A. A. Maneshkin, D. A. Mashkovskii, E. V. Saltykov, K. N. Firsov, R. S. Chuvatkin, and I. M. Yutkin, “Repetitively pulsed Fe:ZnSe laser with an average output power of 20 W at room temperature of the polycrystalline active element,” Quantum Electron. 47 (4), 303–307 (2017). https://doi.org/10.1070/QEL16324

    Article  ADS  Google Scholar 

  21. A. E. Dormidonov, K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, D. V. Savin, and N. A. Timofeeva, “High-efficiency room-temperature ZnSe:Fe2+ laser with a high pulsed radiation energy,” Appl. Phys. B.122 (8), 211 (2016). https://doi.org/10.1007/s00340-016-6489-6

    Article  ADS  Google Scholar 

  22. V. I. Kozlovsky, Yu. V. Korostelin, Yu. P. Podmar’kov, Ya. K. Skasyrsky, and M. P. Frolov, “Middle infrared Fe2+:ZnS, Fe2+:ZnSe and Cr2+:CdSe lasers: New results, ” J. Phys.: Conf. Ser. 740, 012006 (2016). https://doi.org/10.1088/1742-6596/740/1/012006

    Article  Google Scholar 

  23. R. I. Avetisov, S. S. Balabanov, K. N. Firsov, E. M. Gavrishchuk, A. A. Gladilin, V. B. Ikonnikov, V. P. Kalinushkin, S. Yu. Kazantsev, I. G. Kononov, M. P. Zykova, E. N. Mozhevitina, A. V. Khomyakov, D. V. Savin, N. A. Timofeeva, O. V. Uvarov, and I. Ch. Avetissov, “Hot-pressed production and laser properties of ZnSe:Fe2+,” J. Cryst. Growth. 491, 36–41 (2018). https://doi.org/10.1016/j.jcrysgro.2018.03.025

    Article  ADS  Google Scholar 

  24. S. S. Balabanov, K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, D. V. Savin, and N. A. Timofeeva, “Laser properties of Fe2+:ZnSe fabricated by solid-state diffusion bonding,” Laser Phys. Lett. 15 (4), 045806 (2018). https://doi.org/10.1088/1612-202X/aaa93f

    Article  ADS  Google Scholar 

  25. K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, D. V. Savin, and N. A. Timofeeva, “Production and laser characteristics of Fe2+:ZnSxSe1–x polycrystals,” Phys. Wave Phenom. 26 (1), 41–46 (2018). https://doi.org/10.3103/S1541308X18010065

    Article  ADS  Google Scholar 

  26. K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, D. V. Savin, and N. A. Timofeeva, “Energy and spectral characteristics of a room-temperature pulsed laser on a ZnS:Fe2+ polycrystal,” Laser Phys. Lett. 13 (4), 045004 (2016). https://doi.org/10.1088/1612-2011/13/4/045004

    Article  ADS  Google Scholar 

  27. K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, D. V. Savin, and N. A. Timofeeva, “Room-temperature laser on a ZnS:Fe2+ polycrystal with a pulse radiation energy of 0.6 J,” Laser Phys. Lett. 13 (6), 065003 (2016). https://doi.org/10.1088/1612-2011/13/6/065003

    Article  ADS  Google Scholar 

  28. V. I. Kozlovskii, Yu. V. Korostelin, A. I. Landman, V. V. Mislavskii, Yu. P. Podmar’kov, Ya. K. Skasyrsky, and M. P. Frolov, “Pulsed Fe2+:ZnS laser continuously tunable in the wavelength range of 3.49–4.65 μm,” Quantum Electron. 41 (1), 1–3 (2011). https://doi.org/10.1070/QE2011v041n01ABEH014451

    Article  ADS  Google Scholar 

  29. K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, S. A. Rodin, D. V. Savin, and N. A. Timofeeva, “High-energy room-temperature Fe2+:ZnS laser,” Laser Phys. Lett. 13 (1), 015001 (2016). https://doi.org/10.1088/1612-2011/13/1/015001

    Article  ADS  Google Scholar 

  30. M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, Yu. P. Podmar’kov, S. A. Savinova, and Ya. K. Skasyrsky, “3 J pulsed Fe:ZnS laser tunable from 3.44 to 4.19 μm,” Laser Phys. Lett.12 (5), 055001 (2015). https://doi.org/10.1088/1612-2011/12/5/055001

    Article  ADS  Google Scholar 

  31. S. D. Velikanov, A. E. Dormidonov, N. A. Zaretsky, S. Yu. Kazantsev, V. I. Kozlovsky, I. G. Kononov, Yu. V. Korostelin, A. A. Maneshkin, Yu. P. Podmar’kov, Ya. K. Skasyrsky, K. N. Firsov, M. P. Frolov, and I. M. Yutkin, “Room-temperature Fe2+:ZnS single crystal laser pumped by an electric-discharge HF laser,” Quantum Electron. 46 (9), 769–771 (2016). https://doi.org/10.1070/QEL16105

    Article  ADS  Google Scholar 

  32. S. B. Mirov, I. S. Moskalev, S. Vasilyev, V. Smolski, V. V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24 (5), 1601829 (2018). https://doi.org/10.1109/JSTQE.2018.2808284

    Article  Google Scholar 

  33. S. S. Balabanov, K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, I. G. Kononov, S. V. Kurashkin, S. V. Podlesnykh, D. V. Savin, and A. A. Sirotkin, “Room-temperature lasing on Fe2+:ZnSe with meniscus inner doped layer fabricated by solid-state diffusion bonding,” Laser Phys. Lett. 16 (5), 055004 (2019). https://doi.org/10.1088/1612-202X/ab09e8

    Article  ADS  Google Scholar 

  34. V. A. Antonov, A. A. Davydov, K. N. Firsov, E. M. Gavrishchuk, I. G. Kononov, S. V. Kurashkin, S. V. Podlesnykh, N. A. Raspopov, and N. V. Zhavoronkov, “Lasing characteristics of heavily doped single-crystal Fe:ZnSe,” Appl. Phys. B.125 (9), 173 (2019). https://doi.org/10.1007/s00340-019-7288-7

    Article  ADS  Google Scholar 

  35. K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, S. V. Kurashkin, S. V. Podlesnykh, S. A.Rodin, D. V. Savin, and A. A. Sirotkin, “Lasing characteristics of Fe:Cr:ZnSe polycrystals,” Phys. Wave Phenom. 27 (3), 211–216 (2019). https://doi.org/10.3103/S1541308X19030075

    Article  ADS  Google Scholar 

  36. V. A. Antonov, K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, I. G. Kononov, T. V. Kotereva, S. V. Kurashkin, S. V. Podlesnykh, S. A. Rodin, D. V. Savin, A. A. Sirotkin, A. M. Titirenko, and N. V. Zhavoronkov, “Luminescent and lasing characteristics of polycrystalline Cr:Fe:ZnSe exited at 2.09 and 2.94 μm wavelengths,” Laser Phys. Lett. 16 (9), 095002 (2019). https://doi.org/10.1088/1612-202X/ab3851

    Article  ADS  Google Scholar 

  37. V. D. Bulaev, V. S. Gusev, S. Yu. Kazantsev, I. G. Kononov, S. L. Lysenko, Yu. B. Morozov, A. N. Poznyshev, and K. N. Firsov, “High-power repetitively pulsed electric-discharge HF laser,” Quantum Electron. 40 (7), 615–618 (2010). https://doi.org/10.1070/QE2010v040n07ABEH014323

    Article  ADS  Google Scholar 

  38. A. B. Ignat’ev, S. Yu. Kazantsev, I. G. Kononov, V. M. Marchenko, V. A. Feofilaktov, and K. N. Firsov, “On the possibility of controlling the wave front of a wide-aperture HF(DF) laser by the method of Talbot interferometry,” Quantum Electron. 38 (1), 69–72 (2008). https://doi.org/10.1070/QE2008v038n01ABEH013546

    Article  ADS  Google Scholar 

  39. S. V. Garnov, V. A. Mikhailov, R. V. Serov, V. A. Smirnov, V. B. Tsvetkov, and I. A. Shcherbakov, “Study of the possibility of developing a multichannel-diode-pumped multikilowatt solid-state laser based on optically dense active media,” Quantum Electron. 37 (10), 910–915 (2007). https://doi.org/10.1070/QE2007v037n10ABEH013666

    Article  ADS  Google Scholar 

  40. D. V. Savin, E. M. Gavrishchuk, V. B. Ikonnikov, O. N. Eremeykin, and A. S. Egorov, “Laser generation in polycrystalline Cr2+:ZnSe with undoped faces,” Quantum Electron. 45 (1), 8–10 (2015). https://doi.org/10.1070/QE2015v045n01ABEH015712

    Article  ADS  Google Scholar 

  41. S. S. Balabanov, E. M. Gavrishchuk, V. B. Ikonnikov, S. A. Rodin, and D. V. Savin, “Method for producing doped zinc chalcogenides,” Patent application PCT/RU2014/000605. Priority 13.08.2014.

  42. Diffusion Bonding of Materials, Ed. by N. F. Kazakov (Pergamon, Oxford, 1985).

    Google Scholar 

  43. S. B. Mirov, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, M. S. Mirov, and S. V. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe-doped II–VI chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21 (1), 1601719 (2015). https://doi.org/10.1109/JSTQE.2014.2346512

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 19-13-00205 (Development of the Technique for Creating Fe:ZnSe Samples and Preparation of Active Elements for Experiments), and by the Russian Foundation for Basic Research, project no. 18-08-00793 (Experimental Study of Laser Characteristics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Firsov.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dormidonov, A.E., Firsov, K.N., Gavrishchuk, E.M. et al. Suppression of Transverse Parasitic Oscillation in Fe:ZnSe and Fe:ZnS Lasers Based on Polycrystalline Active Elements: A Review. Phys. Wave Phen. 28, 222–230 (2020). https://doi.org/10.3103/S1541308X20030073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X20030073

Navigation