Skip to main content
Log in

Peregrine Soliton Management of Breathers in Two Coupled Gross–Pitaevskii Equations with External Potential

  • PHYSICS OF 1D AND 2D MEDIA
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

By solving analytically two 1D coupled Gross–Pitaevskii equations with a time-dependent harmonic trap, we find Peregrine solutions that can be effectively controlled by modulating the external potential frequency. Indeed, one observes the onset of instability in the dynamical system as the frequency is varied. This leads to the possibility of stabilizing the Peregrine solitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. S. Wabnitz, Ch. Finot, J. Fatome, and G. Millot, “Shallow water rogue wavetrains in nonlinear optical fibers,” Phys. Lett. A.377 (12), 932–939 (2013). https://doi.org/10.1016/j.physleta.2013.02.007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express.16 (6), 3644–3651 (2008). https://doi.org/10.1364/OE.16.003644

    Article  ADS  Google Scholar 

  3. R. Driben and I. Babushkin, “Accelerated rogue waves generated by soliton fusion at the advanced stage of supercontinuum formation in photonic-crystal fibers,” Opt. Lett. 37 (24), 5157–5159 (2012). https://doi.org/10.1364/OL.37.005157

    Article  ADS  Google Scholar 

  4. A. Montina, U. Bortolozzo, S. Residori, and F. T. Arecchi, “Non-Gaussian statistics and extreme waves in a nonlinear optical cavity,” Phys. Rev. Lett. 103 (17), 173901 (2009). https://doi.org/10.1103/PhysRevLett.103.173901

    Article  ADS  Google Scholar 

  5. S. Residori, U. Bortolozzo, A. Montina, F. Lenzini, and F. T. Arecchi, “Rogue waves in spatially extended optical systems,” Fluctuation Noise Lett. 11 (1), 1240014 (2012). https://doi.org/10.1142/S0219477512400147

    Article  Google Scholar 

  6. D. H. Peregrine, “Water waves, nonlinear Schrödinger equations and their solutions,” J. Austral. Math. Soc. Ser. B.25 (1), 16–43 (1983). https://doi.org/10.1017/S0334270000003891

    Article  MathSciNet  MATH  Google Scholar 

  7. N. Akhmediev, A. Ankiewicz, and M. Taki, “Waves that appear from nowhere and disappear without a trace,” Phys. Lett. A.373 (6), 675–678 (2009). https://doi.org/10.1016/j.physleta.2008.12.036

    Article  ADS  MATH  Google Scholar 

  8. C. Bonatto, M. Feyereisen, S. Barland, M. Giudici, C. Masoller, J. R. Rios Leite, and J. R. Tredicce, “Deterministic optical rogue waves,” Phys. Rev. Lett. 107 (5), 053901 (2011). https://doi.org/10.1103/PhysRevLett.107.053901

    Article  ADS  Google Scholar 

  9. F. Baronio, A. Degasperis, M. Conforti, and S. Wabnitz, “Solutions of the vector nonlinear Schrödinger equations: Evidence for deterministic rogue waves,” Phys. Rev. Lett. 109 (4), 044102 (2012). https://doi.org/10.1103/PhysRevLett.109.044102

    Article  ADS  Google Scholar 

  10. D. J. Kedziora, A. Ankiewicz, and N. Akhmediev, “Second-order nonlinear Schrödinger equation breather solutions in the degenerate and rogue wave limits,” Phys. Rev. E.85 (6), 066601 (2012). https://doi.org/10.1103/PhysRevE.85.066601

    Article  ADS  Google Scholar 

  11. P. Gaillard, “Degenerate determinant representation of solutions of the nonlinear Schrödinger equation, higher order Peregrine breathers and multi-rogue waves,” J. Math. Phys. 54 (1), 013504 (2013). https://doi.org/10.1063/1.4773096

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Rogue waves and rational solutions of the Hirota equation,” Phys. Rev. E.81 (4), 046602 (2010). https://doi.org/10.1103/PhysRevE.81.046602

    Article  ADS  MathSciNet  Google Scholar 

  13. Y. Tao and J. He, “Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation,” Phys. Rev. E.85 (2), 026601 (2012). https://doi.org/10.1103/PhysRevE.85.026601

    Article  ADS  Google Scholar 

  14. Li-Chen Zhao and Jie Liu, “Localized nonlinear waves in a two-mode nonlinear fiber,” J. Opt. Soc. Am. B: Opt. Phys. 29 (11), 3119–3127 (2012). https://doi.org/10.1364/JOSAB.29.003119

    Article  ADS  Google Scholar 

  15. Li-Chen Zhao and Jie Liu, “Rogue-wave solutions of a three-component coupled nonlinear Schrödinger equation,” Phys. Rev. E.87 (1), 013201 (2013). https://doi.org/10.1103/PhysRevE.87.013201

    Article  ADS  Google Scholar 

  16. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, “Theory of Bose–Einstein condensation in trapped gases,” Rev. Mod. Phys. 71 (3), 463–512 (1999). https://doi.org/10.1103/RevModPhys.71.463

    Article  ADS  Google Scholar 

  17. K. Staliunas, S. Longhi, and D. J. de Valcárcel, “Faraday patterns in Bose–Einstein condensates,” Phys. Rev. Lett. 89 (21), 210406 (2002). https://doi.org/10.1103/PhysRevLett.89.210406

    Article  ADS  Google Scholar 

  18. F. Kh. Abdullaev, J. G. Caputo, R. A. Kraenkel, and B. A. Malomed, “Controlling collapse in Bose–Einstein condensates by temporal modulation of the scattering length,” Phys. Rev. A.67 (1), 013605 (2003). https://doi.org/10.1103/PhysRevA.67.013605

    Article  ADS  Google Scholar 

  19. Zai-Dong Li, Cong-Zhe Huo, Qiu-Yan Li, Peng-Bin He, and Tian-Fu Xu, “Symmetry and asymmetry rogue waves in two-component coupled nonlinear Schrödinger equations,” Chin. Phys. B.27 (4), 040505 (2018). https://doi.org/10.1088/1674-1056/27/4/040505

    Article  ADS  Google Scholar 

  20. G. P. Agrawal, Nonlinear Fibre Optics (Academic, New York, 2006).

    Google Scholar 

  21. S. V. Manakov, “On the theory of two-dimensional stationary self-focusing of electromagnetic waves,” Sov. Phys.-JETP. 38 (2), 248–253 (1974).

    ADS  Google Scholar 

  22. D. J. Kaup and B. A. Malomed, “Soliton trapping and daughter waves in the Manakov model,” Phys. Rev. A.48 (1), 599–604 (1993). https://doi.org/10.1103/PhysRevA.48.599

    Article  ADS  Google Scholar 

  23. V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons (Springer, Berlin, 1991).

    Book  Google Scholar 

  24. N. Vishnupriya, M. Senthilvelan, and M. Lakshmanan, “Breathers and rogue waves: Demonstration with coupled nonlinear Schrödinger family of equations,” Pramana –J. Phys. 84 (3), 339–352 (2015). https://doi.org/10.1007/s12043-015-0937-4

    Article  Google Scholar 

  25. R. Radha and P. S. Vinayagam, “Stabilization of matter wave solitons in weakly coupled atomic condensates,” Phys. Lett. A.376 (8-9), 944–949 (2012). https://doi.org/10.1016/j.physleta.2012.01.029

    Article  ADS  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors HCS, MB and HB acknowledge the support provided by Hassiba Benbouali University of Chlef and the Ministry of Higher Education and Scientific Research of Algeria through the grants HB00L02UN020120180002/2018-2019. The authors PSV and UAK acknowledge the support of UAE University through the grants UPAR(7)-2015, UPAR(4)-2016, and UPAR(6)-2017. PSV wishes to extend his gratitute to the Principal of PSG College of Arts and Sciences, Coimbatore, Tamilnadu, India for her continuous support, motivation and facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Chaachoua Sameut.

APPENDIX: FROM GPE TO MANAKOV SYSTEM

APPENDIX: FROM GPE TO MANAKOV SYSTEM

Similarity transformation and analytical setup from GPE to Manakov system: we apply the following transformation to Eqs. (1):

$${{\psi }_{1}} = {{Q}_{1}}(X,T){{e}^{{\int {h(t)dt + ia(x,t)} }}},$$
$${{\psi }_{2}} = {{Q}_{2}}(X,T){{e}^{{\int {h(t)dt + ia(x,t)} }}},$$

where

$$X = x{{e}^{{2\int {h(t)dt} }}} - 2\int {{{h}_{1}}(t)} {{e}^{{2\int {h(t)dt} }}}dt,$$
$$\begin{gathered} T = \int {{{e}^{{4\int {h(t)dt} }}}dt} , \\ a(x,t) = - \frac{1}{2}{{x}^{2}}h(t) + x{{h}_{1}}(t) + {{h}_{2}}(t), \\ \end{gathered} $$
$$\begin{gathered} {{R}_{{11}}} = {{R}_{{12}}} = {{R}_{{21}}} = {{R}_{{22}}} = 2\sigma \gamma (t), \\ \gamma (t){{e}^{{2\int {h(t)dt} }}},\,\,\,\,\sigma = {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}. \\ \end{gathered} $$

Substituting the above transformation given by \({{\psi }_{1}}\) and \({{\psi }_{2}}\) in Eqs. (1) and reinforcing the following constraints:

$${{\omega }^{2}}(t) = h{{(t)}^{2}} - \frac{{h{\kern 1pt} '(t)}}{2},\,\,\,\,h(t) = \frac{{h_{1}^{'}(t)}}{{2{{h}_{1}}(t)}},\,\,\,\,h_{2}^{'}(t) = - {{h}_{1}}{{(t)}^{2}},$$

will reduce the coupled GP equations to the coupled NLS equations (2a, 2b) [2022]

$$i\mathop {{{Q}_{1}}}\nolimits_t = \left[ { - \frac{1}{2}\mathop {{{Q}_{1}}}\nolimits_{xx} - \left( {Q_{1}^{2} + Q_{2}^{2}} \right)} \right]{{Q}_{1}},$$
$$i\mathop {{{Q}_{2}}}\nolimits_t = \left[ { - \frac{1}{2}\mathop {{{Q}_{1}}}\nolimits_{xx} - \left( {Q_{1}^{2} + Q_{2}^{2}} \right)} \right]{{Q}_{2}}.$$

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaachoua Sameut, H., Pattu, S., Al Khawaja, U. et al. Peregrine Soliton Management of Breathers in Two Coupled Gross–Pitaevskii Equations with External Potential. Phys. Wave Phen. 28, 305–312 (2020). https://doi.org/10.3103/S1541308X20030036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X20030036

Navigation