Skip to main content

Advertisement

Log in

Neuroprotective Effects of Molecular Hydrogen: A Critical Review

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Molecular hydrogen (H2) is a physiologically inert gas. However, during the last 10 years, increasing evidence has revealed its biological functions under pathological conditions. More specifically, H2 has protective effects against a variety of diseases, particularly nervous system disorders, which include ischemia/reperfusion injury, traumatic injury, subarachnoid hemorrhage, neuropathic pain, neurodegenerative diseases, cognitive dysfunction induced by surgery and anesthesia, anxiety, and depression. In addition, H2 plays protective roles mainly through anti-oxidation, anti-inflammation, anti-apoptosis, the regulation of autophagy, and preservation of mitochondrial function and the blood-brain barrier. Further, H2 is easy to use and has neuroprotective effects with no major side-effects, indicating that H2 administration is a potential therapeutic strategy in clinical settings. Here we summarize the H2 donors and their pharmacokinetics. Meanwhile, we review the effectiveness and safety of H2 in the treatment of various nervous system diseases based on preclinical and clinical studies, leading to the conclusion that H2 can be a simple and effective clinical therapy for CNS diseases such as ischemia-reperfusion brain injury, Parkinson’s disease, and diseases characterized by cognitive dysfunction. The potential mechanisms involved in the neuroprotective effect of H2 are also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dole M, Wilson FR, Fife WP. Hyperbaric hydrogen therapy: a possible treatment for cancer. Science 1975, 190: 152–154.

    Article  CAS  PubMed  Google Scholar 

  2. Gharib B, Hanna S, Abdallahi OMS, Lepidi H, Gardette B, Reggi MD. Anti-inflammatory properties of molecular hydrogen: investigation on parasite-induced liver inflammation. C R Acad Sci III 2001, 324: 719–724.

    Article  CAS  PubMed  Google Scholar 

  3. Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 2007, 13: 688–694.

    Article  CAS  PubMed  Google Scholar 

  4. Ono H, Nishijima Y, Adachi N, Sakamoto M, Kudo Y, Kaneko K, et al. A basic study on molecular hydrogen (H2) inhalation in acute cerebral ischemia patients for safety check with physiological parameters and measurement of blood H2 level. Med Gas Res 2012, 2: 21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huang J, Liu W, Manaenko A, Sun X, Mei Q, Hu Q. Hydrogen inhibits microglial activation and regulates microglial phenotype in a mouse middle cerebral artery occlusion model. Med Gas Res 2019, 9: 127–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Qian L, Pan Y, Zeng Q, Bing L, Cai S, Hui K, et al. Neuroprotective effect of hydrogen-rich saline in global cerebral ischemia/reperfusion rats: up-regulated tregs and down-regulated miR-21, miR-210 and NF-κB expression. Neurochem Res 2016, 41: 2655–2665.

    Article  CAS  Google Scholar 

  7. Yuan J, Wang D, Liu Y, Chen X, Zhang H, Shen F, et al. Hydrogen-rich water attenuates oxidative stress in rats with traumatic brain injury via Nrf2 pathway. J Surg Res 2018, 228: 238–246.

    Article  CAS  PubMed  Google Scholar 

  8. Wang J, Zhang Q, Zhu K, Sun J, Zhang Z, Sun J, et al. Hydrogen-rich saline injection into the subarachnoid cavity within 2 weeks promotes recovery after acute spinal cord injury. Neural Regen Res 2015, 10: 958–964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hong Y, Shao A, Wang J, Chen S, Wu H, Mcbride DW, et al. Neuroprotective effect of hydrogen-rich saline against neurologic damage and apoptosis in early brain injury following subarachnoid hemorrhage: possible role of the Akt/GSK3β signaling pathway. PloS One 2014, 9: e96212.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Shao A, Wu H, Hong Y, Tu S, Sun X, Wu Q, et al. Hydrogen-rich saline attenuated subarachnoid hemorrhage-induced early brain injury in rats by suppressing inflammatory response: possible involvement of NF-κB pathway and NLRP3 inflammasome. Mol Neurobiol 2016, 53: 3462–3476.

    Article  CAS  PubMed  Google Scholar 

  11. Wang H, Huo X, Chen H, Li B, Liu J, Ma W, et al. Hydrogen-rich saline activated autophagy via HIF-1α pathways in neuropathic pain model. Biomed Res Int 2018, 2018: 4670834.

    PubMed  PubMed Central  Google Scholar 

  12. Kawaguchi M, Satoh Y, Otsubo Y, Kazama T. Molecular hydrogen attenuates neuropathic pain in mice. PloS One 2014, 9: e100352.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Hou C, Peng Y, Qin C, Fan F, Liu J, Long J. Hydrogen-rich water improves cognitive impairment gender-dependently in APP/PS1 mice without affecting Aβ clearance. Free Radic Res 2018, 52: 1311–1322.

    Article  CAS  Google Scholar 

  14. Zhang L, Zhao P, Yue C, Jin Z, Liu Q, Du X, et al. Sustained release of bioactive hydrogen by Pd hydride nanoparticles overcomes Alzheimer’s disease. Biomaterials 2019, 197: 393–404.

    Article  CAS  PubMed  Google Scholar 

  15. Yoshii Y, Inoue T, Uemura Y, Iwasaki Y, Yada T, Nakabeppu Y, et al. Complexity of stomach-brain interaction induced by molecular hydrogen in Parkinson’s disease model mice. Neurochem Res 2017, 42: 2658–2665.

    Article  CAS  PubMed  Google Scholar 

  16. Kobayashi Y, Imamura R, Koyama Y, Kondo M, Kobayashi H, Nonomura N, et al. Renoprotective and neuroprotective effects of enteric hydrogen generation from Si-based agent. Sci Rep 2020, 10: 5859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gao Q, Song H, Wang X, Liang Y, Xi Y, Gao Y, et al. Molecular hydrogen increases resilience to stress in mice. Sci Rep 2017, 7: 9625.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mizuno K, Sasaki AT, Ebisu K, Tajima K, Kajimoto O, Nojima J, et al. Hydrogen-rich water for improvements of mood, anxiety, and autonomic nerve function in daily life. Med Gas Res 2017, 7: 247–255.

    Article  CAS  PubMed  Google Scholar 

  19. Liu M, Xie F, Zhang Y, Wang T, Ma S, Zhao P, et al. Molecular hydrogen suppresses glioblastoma growth via inducing the glioma stem-like cell differentiation. Stem Cell Res Ther 2019, 10: 145.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ono H, Nishijima Y, Ohta S, Sakamoto M, Kinone K, Horikosi T, et al. Hydrogen gas inhalation treatment in acute cerebral infarction: a randomized controlled clinical study on safety and neuroprotection. J Stroke Cerebrovasc Dis 2017, 26: 2587–2594.

    Article  PubMed  Google Scholar 

  21. Tamura T, Hayashida K, Sano M, Suzuki M, Shibusawa T, Yoshizawa J, et al. Feasibility and safety of hydrogen gas inhalation for post-cardiac arrest syndrome-first-in-human pilot study. Circ J 2016, 80: 1870–1873.

    Article  CAS  PubMed  Google Scholar 

  22. Tamura T, Hayashida K, Sano M, Onuki S, Suzuki M. Efficacy of inhaled hydrogen on neurological outcome following brain ischemia during post-cardiac arrest care (HYBRID II trial): study protocol for a randomized controlled trial. Trials 2017, 18: 488.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Yoritaka A, Takanashi M, Hirayama M, Nakahara T, Ohta S, Hattori N. Pilot study of H2 therapy in Parkinson’s disease: a randomized double-blind placebo-controlled trial. Mov Disord 2013, 28: 836–839.

    Article  CAS  PubMed  Google Scholar 

  24. Yoritaka A, Abe T, Ohtsuka C, Maeda T, Hirayama M, Watanabe H, et al. A randomized double-blind multi-center trial of hydrogen water for Parkinson’s disease: protocol and baseline characteristics. BMC Neurol 2016, 16: 66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Ge Y, Wu F, Sun X, Xiang Z, Yang L, Huang S, et al. Intrathecal infusion of hydrogen-rich normal saline attenuates neuropathic pain via inhibition of activation of spinal astrocytes and microglia in rats. PloS One 2014, 9: e97436.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Iketani M, Ohsawa I. Molecular hydrogen as a neuroprotective agent. Curr Neuropharmacol 2017, 15: 324–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu B, Qin S. Different types of molecular hydrogen donors and their pharmacokinetics in vivo. Sheng Li Xue Bao 2019, 71: 371–377.

    PubMed  Google Scholar 

  28. Wang Y, Li T, Cao H, Yang W. Recent advances in the neuroprotective effects of medical gases. Med Gas Res 2019, 9: 80.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang Y, Xie K, Li J, Xu N, Gong G, Wang G, et al. Beneficial effects of hydrogen gas against spinal cord ischemia-reperfusion injury in rabbits. Brain Res 2011, 1378: 125–136.

    Article  CAS  PubMed  Google Scholar 

  30. Gao Y, Gui Q, Jin L, Yu P, Wu L, Cao L, et al. Hydrogen-rich saline attenuates hippocampus endoplasmic reticulum stress after cardiac arrest in rats. Neurosci Lett 2017, 640: 29–36.

    Article  CAS  PubMed  Google Scholar 

  31. Wei R, Zhang R, Xie Y, Shen L, Chen F. Hydrogen suppresses hypoxia/reoxygenation-induced cell death in hippocampal neurons through reducing oxidative stress. Cell Physiol Biochem 2015, 36: 585–598.

    Article  CAS  PubMed  Google Scholar 

  32. Cole AR, Perry DA, Raza A, Nedder AP, Pollack E, Regan WL, et al. Perioperatively inhaled hydrogen gas diminishes neurologic injury following experimental circulatory arrest in swine. JACC Basic Transl Sci 2019, 4: 176–187.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chen K, Wang N, Diao Y, Dong W, Sun Y, Liu L, et al. Hydrogen-rich saline attenuates brain injury induced by cardiopulmonary bypass and inhibits microvascular endothelial cell apoptosis via the PI3K/Akt/GSK3β signaling pathway in rats. Cell Physiol Biochem 2017, 43: 1634–1647.

    Article  CAS  PubMed  Google Scholar 

  34. Mo X, Li X, She C, Lu X, Xiao C, Wang S, et al. Hydrogen-rich saline protects rat from oxygen glucose deprivation and reperusion-induced apoptosis through VDAC1 via Bcl-2. Brain Res 2019, 1706: 110–115.

    Article  CAS  PubMed  Google Scholar 

  35. Cui Y, Zhang H, Ji M, Jia M, Chen H, Yang J, et al. Hydrogen-rich saline attenuates neuronal ischemia-reperfusion injury by protecting mitochondrial function in rats. J Surg Res 2014, 192: 564–572.

    Article  CAS  PubMed  Google Scholar 

  36. Hugyecz M, Mracskó E, Hertelendy P, Farkas E, Domoki F, Bari F. Hydrogen supplemented air inhalation reduces changes of prooxidant enzyme and gap junction protein levels after transient global cerebral ischemia in the rat hippocampus. Brain Res 2011, 1404: 31–38.

    Article  CAS  PubMed  Google Scholar 

  37. Wang P, Zhao M, Chen Z, Wu G, Fujino M, Zhang C, et al. Hydrogen gas attenuates hypoxic-ischemic brain injury via regulation of the MAPK/HO-1/PGC-1a pathway in neonatal rats. Oxid Med Cell Longev 2020, 2020: 6978784.

    PubMed  PubMed Central  Google Scholar 

  38. Htun Y, Nakamura S, Nakao Y, Mitsuie T, Nakamura M, Yamato S, et al. Hydrogen ventilation combined with mild hypothermia improves short-term neurological outcomes in a 5-day neonatal hypoxia-ischaemia piglet model. Sci Rep 2019, 9: 4088.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Chu X, Cao L, Yu Z, Xin D, Li T, Ma W, et al. Hydrogen-rich saline promotes microglia M2 polarization and complement-mediated synapse loss to restore behavioral deficits following hypoxia-ischemic in neonatal mice via AMPK activation. J Neuroinflamm 2019, 16: 104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Bai X, Song L, Lin Y, Xie Y, Tong L, Wang L, et al. Hydrogen-rich saline mediates neuroprotection through the regulation of endoplasmic reticulum stress and autophagy under hypoxia-ischemia neonatal brain injury in mice. Brain Res 2016, 1646: 410–417.

    Article  CAS  PubMed  Google Scholar 

  41. Oláh O, Tóthszűki V, Temesvári P, Bari F, Domoki F. Delayed neurovascular dysfunction is alleviated by hydrogen in asphyxiated newborn pigs. Neonatology 2013, 104: 79–86.

    Article  PubMed  CAS  Google Scholar 

  42. Chen X, Cui J, Zhai X, Zhang J, Gu Z, Zhi X, et al. Inhalation of hydrogen of different concentrations ameliorates spinal cord injury in mice by protecting spinal cord neurons from apoptosis, oxidative injury and mitochondrial structure damages. Cell Physiol Biochem 2018, 47: 176–190.

    Article  CAS  PubMed  Google Scholar 

  43. Dohi K, Kraemer BC, Erickson MA, Mcmillan PJ, Kovac A, Flachbartova Z, et al. Molecular hydrogen in drinking water protects against neurodegenerative changes induced by traumatic brain injury. PloS One 2016, 9: e108034.

    Article  CAS  Google Scholar 

  44. Liu F, Xu S, Xiang Z, Li X, Li J, Yuan H, et al. Molecular hydrogen suppresses reactive astrogliosis related to oxidative injury during spinal cord injury in rats. CNS Neurosci Ther 2014, 20: 778–786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ji X, Tian Y, Xie K, Liu W, Qu Y, Fei Z. Protective effects of hydrogen-rich saline in a rat model of traumatic brain injury via reducing oxidative stress. J Surg Res 2012, 178: e9–e16.

    Article  CAS  PubMed  Google Scholar 

  46. Zhan Y, Chen C, Suzuki H, Hu Q, Zhi X, Zhang JH. Hydrogen gas ameliorates oxidative stress in early brain injury after subarachnoid hemorrhage in rats. Crit Care Med 2012, 40: 1291–1296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yuan H, Guo S, Sheng C, Sun C, Zhang J, Sun X. Beneficial effect of hydrogen-rich saline on cerebral vasospasm after experimental subarachnoid hemorrhage in rats. J Neurosci Res 2012, 90: 1670–1680.

    Article  CAS  Google Scholar 

  48. Zhuang Z, Sun X, Zhang X, Liu H, You W, Ma C, et al. Nuclear factor-κB/Bcl-XL pathway is involved in the protective effect of hydrogen-rich saline on the brain following experimental subarachnoid hemorrhage in rabbits. J Neurosci Res 2013, 91: 1599–1608.

    Article  CAS  PubMed  Google Scholar 

  49. Zhuang Z, Zhou M, You W, Zhu L, Ma C, Sun X, et al. Hydrogen-rich saline alleviates early brain injury via reducing oxidative stress and brain edema following experimental subarachnoid hemorrhage in rabbits. BMC Neurosci 2012, 13: 47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shu R, Zhang L, Wang C, Li N, Wang H, Xie K, et al. Spinal peroxynitrite contributes to remifentanil-induced postoperative hyperalgesia via enhancement of divalent metal transporter 1 without iron-responsive element-mediated iron accumulation in rats. Anesthesiology 2015, 122: 908–920.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang L, Shu R, Wang C, Wang H, Li N, Wang G. Hydrogen-rich saline controls remifentanil-induced hypernociception and NMDA receptor NR1 subunit membrane trafficking through GSK-3β in the DRG in rats. Brain Res Bull 2014, 106: 47–55.

    Article  CAS  Google Scholar 

  52. Zhang L, Shu R, Wang H, Yu Y, Wang C, Yang M, et al. Hydrogen-rich saline prevents remifentanil-induced hyperalgesia and inhibits MnSOD nitration via regulation of NR2B-containing NMDA receptor in rats. Neuroscience 2014, 280: 171–180.

    Article  CAS  PubMed  Google Scholar 

  53. Chen Q, Chen P, Zhou S, Yan X, Zhang J, Sun X, et al. Hydrogen-rich saline attenuated neuropathic pain by reducing oxidative stress. Can J Neurol Sci 2013, 40: 857–863.

    Article  PubMed  Google Scholar 

  54. Chen Y, Chen H, Xie K, Liu L, Li Y, Yu Y, et al. H2 treatment attenuated pain behavior and cytokine release through the HO-1/CO pathway in a rat model of neuropathic pain. Inflammation 2015, 38: 1835–1846.

    Article  CAS  PubMed  Google Scholar 

  55. Fu Y, Ito M, Fujita Y, Ito M, Ichihara M, Masuda A, et al. Molecular hydrogen is protective against 6-hydroxydopamine-induced nigrostriatal degeneration in a rat model of Parkinson’s disease. Neurosci Lett 2009, 453: 81–85.

    Article  CAS  PubMed  Google Scholar 

  56. Mikako I, Masaaki H, Kazuaki Y, Sae G, Masafumi I, Masatoshi I, et al. Drinking hydrogen water and intermittent hydrogen gas exposure, but not lactulose or continuous hydrogen gas exposure, prevent 6-hydorxydopamine-induced Parkinson’s disease in rats. Med Gas Res 2012, 2: 15.

    Article  CAS  Google Scholar 

  57. Fujita K, Seike T, Yutsudo N, Ohno M, Yamada H, Yamaguchi H, et al. Hydrogen in drinking water reduces dopaminergic neuronal loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. PloS One 2009, 4: e7247.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Matsumoto A, Yamafuji M, Tachibana T, Nakabeppu Y, Noda M, Nakaya H. Oral ‘hydrogen water’ induces neuroprotective ghrelin secretion in mice. Sci Rep 2013, 3: 3273.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Li J, Wang C, Zhang JH, Cai J, Cao Y, Sun X. Hydrogen-rich saline improves memory function in a rat model of amyloid-beta-induced Alzheimer’s disease by reduction of oxidative stress. Brain Res 2010, 1328: 152–161.

    Article  CAS  PubMed  Google Scholar 

  60. Wang C, Li J, Liu Q, Yang R, Zhang JH, Cao Y, et al. Hydrogen-rich saline reduces oxidative stress and inflammation by inhibit of JNK and NF-κB activation in a rat model of amyloid-beta-induced Alzheimer’s disease. Neurosci Lett 2011, 491: 127–132.

    Article  CAS  PubMed  Google Scholar 

  61. Lin CL, Huang WN, Li HH, Huang CN, Hsieh S, Lai C, et al. Hydrogen-rich water attenuates amyloid β-induced cytotoxicity through upregulation of Sirt1-FoxO3a by stimulation of AMP-activated protein kinase in SK-N-MC cells. Chem Biol Interact 2015, 240: 12–21.

    Article  CAS  PubMed  Google Scholar 

  62. Yi Z, Su W, Ying C, Wu T, Hong G, Shen X, et al. Effects of hydrogen-rich water on depressive-like behavior in mice. Sci Rep 2016, 6: 23742.

    Article  CAS  Google Scholar 

  63. Wen D, Zhao P, Hui R, Wang J, Shen Q, Gong M, et al. Hydrogen-rich saline attenuates anxiety-like behaviors in morphine-withdrawn mice. Neuropharmacology 2017, 118: 199–208.

    Article  CAS  PubMed  Google Scholar 

  64. Guo Q, Yin X, Qiao M, Jia Y, Chen D, Shao J, et al. Hydrogen-rich water ameliorates autistic-like behavioral abnormalities in valproic acid-treated adolescent mice offspring. Front Behav Neurosci 2018, 12: 170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Ji X, Zhang Q, Zheng W, Yao W. Morphological and molecular response of small intestine to lactulose and hydrogen-rich water in female piglets fed Fusarium mycotoxins contaminated diet. J Anim Sci Biotechnol 2019, 10: 9.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zhao L, Wang Y, Zhang G, Zhang T, Lou J, Liu J. L-arabinose elicits gut-derived hydrogen production and ameliorates metabolic syndrome in C57BL/6J mice on high-fat-diet. Nutrients 2019, 11: 3054.

    Article  CAS  PubMed Central  Google Scholar 

  67. Hou C, Wang Y, Zhu E, Yan C, Zhao L, Wang X, et al. Coral calcium hydride prevents hepatic steatosis in high fat diet-induced obese rats: a potent mitochondrial nutrient and phase II enzyme inducer. Biochem Pharmacol 2016, 103: 85–97.

    Article  CAS  PubMed  Google Scholar 

  68. Zhou G, Goshi E, He Q. Micro/nanomaterials-augmented hydrogen therapy. Adv Healthc Mater 2019, 8: e1900463.

    Article  PubMed  CAS  Google Scholar 

  69. Zhu Q, Wu Y, Li Y, Chen Z, Wang L, Xiong H, et al. Positive effects of hydrogen-water bathing in patients of psoriasis and parapsoriasis en plaques. Sci Rep 2018, 8: 8051.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Shimouchi A, Nose K, Shirai M, Kondo T. Estimation of molecular hydrogen consumption in the human whole body after the ingestion of hydrogen-rich water. Adv Exp Med Biol 2012, 737: 245–250.

    Article  CAS  PubMed  Google Scholar 

  71. Ono H, Nishijima Y, Adachi N, Sakamoto M, Kudo Y, Nakazawa J, et al. Hydrogen (H2) treatment for acute erythymatous skin diseases. A report of 4 patients with safety data and a non-controlled feasibility study with H2 concentration measurement on two volunteers. Med Gas Res 2012, 2: 14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu C, Kurokawa R, Fujino M, Hirano S, Sato B, Li X. Estimation of the hydrogen concentration in rat tissue using an airtight tube following the administration of hydrogen via various routes. Sci Rep 2014, 4: 5485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Takeuchi S, Nagatani K, Otani N, Nawashiro H, Sugawara T, Wada K, et al. Hydrogen improves neurological function through attenuation of blood-brain barrier disruption in spontaneously hypertensive stroke-prone rats. BMC Neurosci 2015, 16: 22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Yamamoto R, Homma K, Suzuki S, Sano M, Sasaki J. Hydrogen gas distribution in organs after inhalation: real-time monitoring of tissue hydrogen concentration in rat. Sci Rep 2019, 9: 1255.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Zhao P, Jin Z, Chen Q, Yang T, Chen D, Meng J, et al. Local generation of hydrogen for enhanced photothermal therapy. Nat Commun 2018, 9: 1–12.

    Article  CAS  Google Scholar 

  76. Chen L, Chao Y, Cheng P, Li N, Zheng H, Yang Y. UPLC-QTOF/MS-based metabolomics reveals the protective mechanism of hydrogen on mice with ischemic stroke. Neurochem Res 2019, 44: 1950–1963.

    Article  CAS  PubMed  Google Scholar 

  77. Huang J, Liu W, Sun X. Hydrogen inhalation improves mouse neurological outcomes after cerebral ischemia/reperfusion independent of anti-necroptosis. Med Gas Res 2018, 8: 1–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Huang L, Applegate II RL, Applegate PM, Gong L, Ocak U, Boling W, et al. Inhalation of high-concentration hydrogen gas attenuates cognitive deficits in a rat model of asphyxia induced-cardiac arrest. Med Gas Res 2019, 9: 122–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Huang L, Applegate II RL, Applegate PM, Boling W, Zhang JH. Inhalation of high concentration hydrogen gas improves short-term outcomes in a rat model of asphyxia induced-cardiac arrest. Med Gas Res 2018, 8: 73–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hayashida K, Sano M, Kamimura N, Yokota T, Suzuki M, Ohta S, et al. Hydrogen inhalation during normoxic resuscitation improves neurological outcome in a rat model of cardiac arrest independently of targeted temperature management. Circulation 2014, 130: 2173–2180.

    Article  CAS  PubMed  Google Scholar 

  81. Chen G, Chen B, Dai C, Wang J, Wang J, Huang Y, et al. Hydrogen inhalation is superior to mild hypothermia for improving neurological outcome and survival in a cardiac arrest model of spontaneously hypertensive rat. Shock 2018, 50: 689–695.

    Article  CAS  PubMed  Google Scholar 

  82. Huo T, Zeng Y, Liu X, Sun L, Han H, Chen H, et al. Hydrogen-rich saline improves survival and neurological outcome after cardiac arrest and cardiopulmonary resuscitation in rats. Anesth Analg 2014, 119: 368–380.

    Article  CAS  PubMed  Google Scholar 

  83. Wang P, Jia L, Chen B, Zhang L, Liu J, Long J, et al. Hydrogen inhalation is superior to mild hypothermia in improving cardiac function and neurological outcome in an asphyxial cardiac arrest model of rats. Shock 2016, 46: 312–318.

    Article  CAS  PubMed  Google Scholar 

  84. Nagatani K, Nawashiro H, Takeuchi S, Tomura S, Otani N, Osada H, et al. Safety of intravenous administration of hydrogen-enriched fluid in patients with acute cerebral ischemia: initial clinical studies. Med Gas Res 2013, 3: 13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ono H, Nishijima Y, Adachi N, Tachibana S, Chitoku S, Mukaihara S, et al. Improved brain MRI indices in the acute brain stem infarct sites treated with hydroxyl radical scavengers, Edaravone and hydrogen, as compared to Edaravone alone. A non-controlled study. Med Gas Res 2011, 1: 12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Palanisamy A, Baxter MG, Keel PK, Xie Z, Crosby G, Culley DJ. Rats exposed to isoflurane in utero during early gestation are behaviorally abnormal as adults. Anesthesiology 2011, 114: 521–528.

    Article  CAS  PubMed  Google Scholar 

  87. Domoki F, Oláh O, Zimmermann A, Németh I, Tóthszuki V, Hugyecz M, et al. Hydrogen is neuroprotective and preserves cerebrovascular reactivity in asphyxiated newborn pigs. Pediatr Res 2010, 68: 387–392.

    CAS  PubMed  Google Scholar 

  88. Tian R, Hou Z, Hao S, Wu W, Mao X, Tao X, et al. Hydrogen-rich water attenuates brain damage and inflammation after traumatic brain injury in rats. Brain Res 2016, 1637: 1–13.

    Article  CAS  PubMed  Google Scholar 

  89. Fu J, Lan Q, Wang D, Wang Y, Liu Y. Effect of hydrogen-rich water on the chondriosome damage and cytokines in brain tissue of rats with traumatic brain injury. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2018, 30: 317–321.

    PubMed  Google Scholar 

  90. Ji X, Liu W, Xie K, Liu W, Qu Y, Chao X, et al. Beneficial effects of hydrogen gas in a rat model of traumatic brain injury via reducing oxidative stress. Brain Res 2012, 178: e9–e16.

    CAS  Google Scholar 

  91. Hou Z, Luo W, Sun X, Hao S, Zhang Y, Xu F, et al. Hydrogen-rich saline protects against oxidative damage and cognitive deficits after mild traumatic brain injury. Brain Res Bull 2012, 88: 560–565.

    Article  CAS  PubMed  Google Scholar 

  92. Choi K, Kim H, Do S, Hwang S, Yi HJ. Neuroprotective effects of hydrogen inhalation in an experimental rat intracerebral hemorrhage model. Brain Res Bull 2018, 142: 122–128.

    Article  CAS  PubMed  Google Scholar 

  93. Manaenko A, Lekic T, Ma Q, Ostrowski RP, Zhang JH, Tang J. Hydrogen inhalation is neuroprotective and improves functional outcomes in mice after intracerebral hemorrhage. Acta Neurochir Suppl 2011, 111: 179–183.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Scholz J, Woolf CJ. The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 2007, 10: 1361.

    Article  CAS  PubMed  Google Scholar 

  95. Hirayama M, Ito M, Minato T, Yoritaka A, LeBaron TW, Ohno K. Inhalation of hydrogen gas elevates urinary 8-hydroxy-2′-deoxyguanine in Parkinson’s disease. Med Gas Res 2018, 8: 144–149.

    Article  CAS  PubMed  Google Scholar 

  96. Yoritaka A, Ohtsuka C, Maeda T, Hirayama M, Abe T, Watanabe H, et al. Randomized, double-blind, multicenter trial of hydrogen water for Parkinson’s disease. Mov Disord 2018, 33: 1505–1507.

    Article  PubMed  Google Scholar 

  97. Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 2016, 167: 1469–1480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ostojic SM. Inadequate production of H2 by gut microbiota and Parkinson disease. Trends Endocrinol Metab 2018, 29: 286–288.

    Article  CAS  PubMed  Google Scholar 

  99. Yang J, Wang Z, Cai H, Yuan L, Hu M, Wu M, et al. Sex differences in neuropathology and cognitive behavior in APP/PS1/tau triple-transgenic mouse model of Alzheimer’s disease. Neurosci Bull 2018, 34: 736–746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. He X, Wang S, Yin C, Wang T, Jia C, Ma Y. Hydrogen-rich water exerting a protective effect on ovarian reserve function in a mouse model of immune premature ovarian failure induced by zona pellucida 3. Chin Med J (Engl) 2016, 129: 2331–2337.

    Article  CAS  PubMed Central  Google Scholar 

  101. Jiang X, Niu X, Guo Q, Dong Y, Xu J, Yin N, et al. FoxO1-mediated autophagy plays an important role in the neuroprotective effects of hydrogen in a rat model of vascular dementia. Behav Brain Res 2019, 356: 98–106.

    Article  CAS  PubMed  Google Scholar 

  102. Liu M, Yuan H, Yin J, Wang R, Song J, Hu B, et al. Effect of hydrogen-rich water on radiation-induced cognitive dysfunction in rats. Radiat Res 2020, 193: 16–23.

    Article  CAS  PubMed  Google Scholar 

  103. Li W, Yang S, Yu F, Zhao Y, Sun Z, An J, et al. Hydrogen ameliorates chronic intermittent hypoxia-induced neurocognitive impairment via inhibiting oxidative stress. Brain Res Bull 2018, 143: 225–233.

    Article  CAS  PubMed  Google Scholar 

  104. Nagata K, Nakashimakamimura N, Mikami T, Ohsawa I, Ohta S. Consumption of molecular hydrogen prevents the stress-induced impairments in hippocampus-dependent learning tasks during chronic physical restraint in mice. Neuropsychopharmacology 2009, 34: 501–508.

    Article  CAS  Google Scholar 

  105. Jia R, Jia N, Yang F, Liu Z, Li R, Jiang Y, et al. Hydrogen alleviates necroptosis and cognitive deficits in lithium–pilocarpine model of status epilepticus. Cell Mol Neurobiol 2019, 39: 857–869.

    Article  CAS  PubMed  Google Scholar 

  106. Gu Y, Huang CS, Inoue T, Yamashita T, Ishida T, Kang KM, et al. Drinking hydrogen water ameliorated cognitive impairment in senescence-accelerated mice. J Clin Biochem Nutr 2010, 46: 269–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Li C, Hou L, Chen D, Lin F, Chang T, Li M, et al. Hydrogen-rich saline attenuates isoflurane-induced caspase-3 activation and cognitive impairment via inhibition of isoflurane-induced oxidative stress, mitochondrial dysfunction, and reduction in ATP levels. Am J Transl Res 2017, 9: 1162–1172.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Tian Y, Guo S, Zhang Y, Xu Y, Zhao P, Zhao X. Effects of hydrogen-rich saline on hepatectomy-induced postoperative cognitive dysfunction in old mice. Mol Neurobiol 2017, 54: 2579–2584.

    Article  CAS  PubMed  Google Scholar 

  109. Luo H, Liu Z, Liu B, Li H, Yang Y, Xu Z-QD. Virus-mediated overexpression of ETS-1 in the ventral hippocampus counteracts depression-like behaviors in rats. Neurosci Bull 2019, 35: 1035–1044.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Ishibashi T. Therapeutic efficacy of molecular hydrogen: a new mechanistic insight. Curr Pharm Des 2019, 25: 946–955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ishihara G, Kawamoto K, Komori N, Ishibashi T. Molecular hydrogen suppresses superoxide generation in the mitochondrial complex I and reduced mitochondrial membrane potential. Biochem Biophys Res Commun 2020, 522: 965–970.

    Article  CAS  PubMed  Google Scholar 

  112. Gvozdjáková A, Kucharská J, Kura B, Vančová O, Rausová Z, Sumbalová Z, et al. A new insight into the molecular hydrogen effect on coenzyme Q and mitochondrial function of rats. Can J Physiol Pharmacol 2020, 98: 29–34.

    Article  PubMed  CAS  Google Scholar 

  113. Zhang X, Zhang Z, Wei Y, Li M, Zhao P, Adzavon YM, et al. Mitochondria in higher plants possess H2 evolving activity which is closely related to complex I. arXiv 2020, 2001.02132. https://arxiv.org/abs/2001.02132.

  114. Ma X, Zhang X, Xie F, Zhao P, Zhang Z, Yi Y, et al. Bio-enzyme basis of hydrogen in biological system. Curr Biotechnol 2020, 10: 15–22.

    Google Scholar 

  115. Wang X, Zhang L, Zhao W, Liu T. The protective effects of hydrogen on HO-1 expression in the brainafter focal cerebral ischemia reperfusion in rats. Turk J Med Sci 2016, 46: 1534–1539.

    Article  CAS  PubMed  Google Scholar 

  116. Zhou L, Wang X, Xue W, Xie K, Huang Y, Chen H, et al. Beneficial effects of hydrogen-rich saline against spinal cord ischemia-reperfusion injury in rabbits. Brain Res 2013, 1517: 150–160.

    Article  CAS  PubMed  Google Scholar 

  117. Wang T, Zhao L, Liu M, Xie F, Ma X, Zhao P, et al. Oral intake of hydrogen-rich water ameliorated chlorpyrifos-induced neurotoxicity in rats. Toxicol Appl Pharmacol 2014, 280: 169–176.

    Article  CAS  PubMed  Google Scholar 

  118. Zhang M, An C, Gao Y, Leak RK, Chen J, Zhang F. Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog Neurobiol 2013, 100: 30–47.

    Article  CAS  PubMed  Google Scholar 

  119. Murakami Y, Ito M, Ohsawa I. Molecular hydrogen protects against oxidative stress-induced SH-SY5Y neuroblastoma cell death through the process of mitohormesis. PloS One 2017, 12: e0176992.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Shi Y, Wang G, Li J, Yu W. Hydrogen gas attenuates sevoflurane neurotoxicity through inhibiting nuclear factor κ-light-chain-enhancer of activated B cells signaling and proinflammatory cytokine release in neonatal rats. Neuroreport 2017, 28: 1170–1175.

    Article  CAS  PubMed  Google Scholar 

  121. Liu Y, Dong F, Guo R, Zhang Y, Qu X, Wu X, et al. Hydrogen-rich saline ameliorates experimental autoimmune encephalomyelitis in C57BL/6 mice via the Nrf2-ARE signaling pathway. Inflammation 2019, 42: 586–597.

    Article  CAS  PubMed  Google Scholar 

  122. Qin C, Zhou L, Ma X, Hu Z, Yang S, Chen M, et al. Dual functions of microglia in ischemic stroke. Neurosci Bull 2019, 35: 921–933.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Ning K, Liu W, Huang J, Lu H, Sun X. Effects of hydrogen on polarization of macrophages and microglia in a stroke model. Med Gas Res 2018, 8: 154–159.

    Article  CAS  PubMed  Google Scholar 

  124. Fischer R, Maier O. Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxid Med Cell Longev 2015, 2015: 610813.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Minutoli L, Puzzolo D, Rinaldi M, Irrera N, Marini H, Arcoraci V, et al. ROS-mediated NLRP3 inflammasome activation in brain, heart, kidney, and testis ischemia/reperfusion injury. Oxid Med Cell Longev 2016, 2016: 2183026.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Tao G, Song G, Qin S. Molecular hydrogen: current knowledge on mechanism in alleviating free radical damage and diseases. Acta Biochim Biophys Sin (Shanghai) 2019, 51: 1189–1197.

    Article  CAS  Google Scholar 

  127. Zhang Y, Li H, Yang C, Fan D, Guo D, Hu H, et al. Treatment with hydrogen-rich saline delays disease progression in a mouse model of amyotrophic lateral sclerosis. Neurochem Res 2016, 41: 770–778.

    Article  CAS  PubMed  Google Scholar 

  128. Hongtao MA, Chen H, Dong A, Wang Y, Bian Y, Xie K. Hydrogen-rich saline attenuates hyperalgesia and reduces cytokines in rats with post-herpetic neuralgia via activating autophagy. Chin J Cell Mol Immunol 2017, 33: 155–158.

    Google Scholar 

  129. Pérez MJ, Ponce DP, Aranguiz A, Behrens MI, Quintanilla RA. Mitochondrial permeability transition pore contributes to mitochondrial dysfunction in fibroblasts of patients with sporadic Alzheimer’s disease. Redox Biol 2018, 19: 290–300.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Arabian M, Aboutaleb N, Soleimani M, Ajami M, Habibey R, Pazoki-Toroudi H. Activation of mitochondrial KATP channels mediates neuroprotection induced by chronic morphine preconditioning in hippocampal CA-1 neurons following cerebral ischemia. Adv Med Sci 2018, 63: 213–219.

    Article  PubMed  Google Scholar 

  131. Khatri R, Mckinney AM, Swenson B, Janardhan V. Blood-brain barrier, reperfusion injury, and hemorrhagic transformation in acute ischemic stroke. Neurology 2012, 79: S52–S57.

    Article  PubMed  Google Scholar 

  132. Nakao A, Toyoda Y, Sharma P, Evans M, Guthrie N. Effectiveness of hydrogen rich water on antioxidant status of subjects with potential metabolic syndrome-an open label pilot study. J Clin Biochem Nutr 2010, 46: 140–149.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Wang G, Romero-Gallo J, Benoit SL, Piazuelo MB, Dominguez RL, Morgan DR, et al. Hydrogen metabolism in Helicobacter pylori plays a role in gastric carcinogenesis through facilitating CagA translocation. MBio 2016, 7: e01022–01016.

    Google Scholar 

Download references

Acknowledgements

This review was supported by the National Natural Science Foundation of China (81770855 and 81773717), the Taishan Scholarship from the Shandong Province Government (ts201511057), and the High-Level Talent Training Program of Taishan Medical University (2018GCC08). We are grateful to Nikoli Peacher of West Virginia University for assistance in editing and proofreading.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Han-Ting Zhang or Shu-Cun Qin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Zhang, HT. & Qin, SC. Neuroprotective Effects of Molecular Hydrogen: A Critical Review. Neurosci. Bull. 37, 389–404 (2021). https://doi.org/10.1007/s12264-020-00597-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-020-00597-1

Keywords

Navigation