Skip to main content
Log in

Multi-Step Thermodynamic Calculation for Copper Dross Bath Smelting Process

  • Published:
Mining, Metallurgy & Exploration Aims and scope Submit manuscript

Abstract

The oxygen-rich bath smelting process of copper dross was simulated using Factsage software. It was found that the two-step simulation results agreed better with the industrial data, especially in the speiss. Bi, Pb, Sb, As, and Cu contents in the speiss by two-step simulation differed from the industrial data by 0.6 wt.%, 0.8 wt.%, 2.6 wt.%, 7.2 wt.%, and 8.6 wt.%, respectively. Two-step simulation results indicated that the speiss partitioning of Sb, As, and Cu increased from 60.1%, 32.3%, and 27.5% to 81.6%, 67.8%, and 47.2%, respectively, with the smelting temperature increasing from 1050 °C to 1250 °C. While the metal partitioning of Sb and Cu increased from 0% and 2.7% to 15.2% and 13.3%, respectively, with the separation temperature increasing from 400 °C to 700 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xiao H, Xie BY, Chen L, Wang ZX, Liu WF, Zhang DC, Yang TZ (2019) Metal distribution behavior in copper dross smelting for enrichment. J Cent South Univ 50(7):1527–1536. https://doi.org/10.11817/j.issn.1672-7207.2019.07.004

    Article  Google Scholar 

  2. Zhang HW, Sun L, Fu L, Ji ZG (2019) Elemental behaviors of molten FeO-SiO2-Fe3O4-based copper slags. JOM 71:1997–2002. https://doi.org/10.1007/s11837-019-03406-x

    Article  Google Scholar 

  3. Guo XY, Tian M, Wang SS, Yan SY, Wang QM, Yuan ZS, Tian QH, Tang DX, Li ZC (2019) Element distribution in oxygen-enriched bottom-blown smelting of high-arsenic copper dross. JOM 71:3941–3948. https://doi.org/10.1007/s11837-019-03767-3

    Article  Google Scholar 

  4. Yang TZ, Xiao H, Chen L, Chen W, Liu WF, Zhang DC (2018) Element distribution in the oxygen-rich side-blow bath smelting of a low-grade bismuth-lead concentrate. JOM 70:1005–1010. https://doi.org/10.1007/s11837-018-2813-4

    Article  Google Scholar 

  5. Jak E, Hidayat T, Shishin D, Mackey PJ, Hayes PC (2019) Modelling of liquid phases and metal distributions in copper converters: transferring process fundamentals to plant practice. Miner Process Ext Metall 128:74–107. https://doi.org/10.1080/25726641.2018.1506273

    Article  Google Scholar 

  6. Yamaguchi K, Swinbourne DR, Yazawa A (2005) Behaviour of minor species during oxidation smelting of lead concentrate. In: Fujisawa T (ed) Proceedings of the Lead-zinc. The Mining and Metallurgical Institute of Japan, Kyoto, pp 1231–1246

    Google Scholar 

  7. Swinbourne DR, Kho TS (2012) Computational thermodynamics modeling of minor element distributions during copper flash converting. Metall Mater Trans B Process Metall Mater Process Sci 43:823–829. https://doi.org/10.1007/s11663-012-9652-4

    Article  Google Scholar 

  8. Wang QM, Guo XY, Tian QH, Jiang T, Chen M, Zhao BJ (2017) Development and application of SKSSIM simulation software for the oxygen bottom blown copper smelting process. Metals 7:431–441. https://doi.org/10.3390/met7100431

    Article  Google Scholar 

  9. Yang M, Di JC (2012) Pilot test on treatment of copper scum by bottom-blown furnace. China Nonferrous Metall 4:22–24. https://doi.org/10.3969/j.issn.1672-6103.2012.04.006

    Article  Google Scholar 

  10. Zhang L, Wang YY, Li XB, Lu GC, Wang QJ (2016) Production practice of copper dross treatment with oxygen side-blowing furnace. China Nonferrous Metall 3:13–15. https://doi.org/10.3969/j.issn.1672-6103.2016.03.004

    Article  Google Scholar 

  11. Coursol P, Mackey PJ, Kapusta JPT, Valencia NC (2015) Energy consumption in copper smelting: a new asian horse in the race. JOM 67:1066–1074. https://doi.org/10.1007/s11837-015-1380-1

    Article  Google Scholar 

  12. Guo XY, Wang QM, Tian QH, Zhang YZ (2015) Non-steady multiphase equilibrium process of copper oxygen-enriched bottom blowing bath smelting with gradual change of oxygen and sulfur potential positions in furnace. Chin J Nonferrous Met 25:1072–1079 https://doi.org/1004-0609(2015)04-1072-08

    Google Scholar 

  13. Chen L, Hao ZD, Yang TZ, Liu WF, Zhang DC, Zhang L, Bin S, Bin WD (2015) A comparison study of the oxygen-rich side blow furnace and the oxygen-rich bottom blow furnace for liquid high lead slag reduction. JOM 67:1123–1129. https://doi.org/10.1007/s11837-015-1375-y

    Article  Google Scholar 

  14. Lennartsson A, Engström F, Björkman B, Samuelsson C (2013) Development of a model for copper converting. Can Metall Q 52:422–429. https://doi.org/10.1179/1879139513Y.0000000089

    Article  Google Scholar 

  15. Bale CW, Chartrand P, Degterov SA, Eriksson G, Hack K, Mahfoud RB, Melançon J, Pelton AD, Petersen S (2002) FactSage thermochemical software and databases. Calphad 26(2):189–228. https://doi.org/10.1016/S0364-5916(02)00035-4

    Article  Google Scholar 

  16. Chen P, Xiao H, Chen J, Chen L, Zhang DC, Liu WF, Yang TZ (2020) Oxygen-rich side-blown bath smelting of copper dross: a process study. J Sustain Metall 6:344–354. https://doi.org/10.1007/s40831-020-00278-3

    Article  Google Scholar 

  17. Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G, Gheribi AE, Hack K, Jung IH, Kang YB, Melançon J, Pelton AD, Petersen S, Robelin C, Sangster J, Spencer P, Van EMA (2016) FactSage thermochemical software and databases, 2010-2016. Calphad 54:35–53. https://doi.org/10.1016/j.calphad.2016.05.002

    Article  Google Scholar 

  18. Zakeri A, Hino M, Itagaki K (1998) Activity of silver in molten copper sulfide saturated with copper. Mater Trans JIM 39(11):1101–1107. https://doi.org/10.2320/matertrans1989.39.1101

    Article  Google Scholar 

  19. Zhong T, Lynch DC (2000) Henrian activity coefficient of bi in cu-Fe mattes and white metal. Can Metall Q 39:23–36. https://doi.org/10.1179/cmq.2000.39.1.23

    Article  Google Scholar 

  20. Lynch DC, Zhong T (2005) Volatilization and activity coeeficient of Sb in cu-Fe mattes and white metal. Can Metall Q 44:409–420. https://doi.org/10.1179/cmq.2005.44.3.409

    Article  Google Scholar 

  21. Roghani G, Takeda Y, Itagaki K (2000) Phase equilibrium and minor element distribution between FeOX-SiO2-MgO–based slag and Cu2S-FeS matte at 1573K under high partial pressures of SO2. Metall Mater Trans B Process Metall Mater Process Sci 31B:705–712. https://doi.org/10.1007/s11663-000-0109-9

    Article  Google Scholar 

  22. Shishin D, Chen J, Hidayat T, Jak E (2019) Thermodynamic modeling of the Pb-as and cu-Pb-as systems supported by experimental study. J Phase Equilib Diffus 40:758–767. https://doi.org/10.1007/s11669-019-00764-6

    Article  Google Scholar 

Download references

Funding

The financial supports from the National Key Research and Development Program of China (2018YFC1901604), Natural Science Foundation of Hunan province (No. 2018JJ3662), China Scholarship Council (No. 201706375005) and China Postdoctoral Science Foundation (No. 2018 M632988), and the help from Dr. Jiang CHEN for EPMA analysis (Centre for Advanced Microscopy, the Australian National University, Australia) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, B., Xiao, H., Chen, L. et al. Multi-Step Thermodynamic Calculation for Copper Dross Bath Smelting Process. Mining, Metallurgy & Exploration 38, 233–241 (2021). https://doi.org/10.1007/s42461-020-00329-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42461-020-00329-z

Keywords

Navigation