Skip to main content

Advertisement

Log in

Preliminary Assessment of Uranium Contamination in Drinking Water Sources Near a Uranium Mine in the Siavonga District, Zambia, and Associated Health Risks

Vorläufige Bewertung der Urankontamination in Trinkwasserquellen in der Nähe einer Uranmine im Bezirk Siavonga, Sambia, und damit verbundene Gesundheitsrisiken

Evaluación preliminar de la contaminación por uranio en las fuentes de agua potable cercanas a una mina de uranio en el distrito de Siavonga, Zambia y los riesgos asociados para la salud

赞比亚Siavonga区铀矿附近饮用水源的铀污染及健康风险初步评价

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Uranium (U) levels in drinking water sources in the vicinity of a U mine in the Siavonga district in the Southern Province of Zambia are alarming. The median U concentrations in drinking water sources showed a decreasing trend: streams (135.30 µg/L) > dams (115.62 µg/L) > boreholes (111.31 µg/L) > shallow wells (110.03 µg/L). The U levels in all the samples exceeded the safe limit for drinking water recommended by the World Health Organization, suggesting that the water is not safe for consumption. The mean target hazard quotients (THQ) in all of the water samples exceeded the safe limit (THQ > 1), implying that consumers of this water were at a greater risk of potential non-carcinogenic health effects. The carcinogenic risks from uranium at most of the drinking water sources also exceeded acceptable thresholds (10–6), indicating an increased risk of cancer for the population.

Zusammenfassung

Die Uran(U)-Werte in Trinkwasserquellen in der Nähe einer U-Mine im Bezirk Siavonga in der Südprovinz Sambias sind alarmierend. Die mittleren U-Konzentrationen in Trinkwasserquellen zeigten einen abnehmenden Trend: Bäche (135.30 µg/L) > Dämme (115.62 µg/L) > Bohrlöcher (111.31 µg/L) > Flachbrunnen (110.03 µg/L). Die U-Werte in allen Proben überschritten den von der Weltgesundheitsorganisation empfohlenen sicheren Grenzwert für Trinkwasser, was darauf hindeutet, dass das Wasser für den Konsum nicht sicher ist. Der mittlere Zielgefährdungsquotient (THQ) in allen Wasserproben überschritt den sicheren Grenzwert (THQ >1), was darauf hindeutet, dass die Verbraucher dieses Wassers einem grösseren Risiko potenzieller nicht karzinogener Gesundheitseffekte ausgesetzt waren. Die karzinogenen Risiken durch Uran an den meisten Trinkwasserquellen überschritten ebenfalls die akzeptablen Schwellenwerte (10–6), was auf ein erhöhtes Krebsrisiko für die Bevölkerung hinweist.

Resumen

Los niveles de uranio (U) en las fuentes de agua potable en las cercanías de una mina de U en el distrito de Siavonga, en la Provincia Meridional de Zambia, son alarmantes. Las concentraciones medias de U en las fuentes de agua potable mostraron una tendencia decreciente: arroyos (135.30 µg/L) > presas (115.62 µg/L) > perforaciones (111.31 µg/L) > pozos poco profundos (110.03 µg/L). Los niveles de U en todas las muestras excedieron el límite seguro para el agua potable recomendado por la Organización Mundial de la Salud, lo que sugiere que el agua no es segura para el consumo. Los cocientes de riesgo del objetivo medio (THQ) en todas las muestras de agua excedieron el límite seguro (THQ>1), lo que implica que los consumidores de esta agua corrían un mayor riesgo de posibles efectos no cancerígenos para la salud. Los riesgos cancerígenos del uranio en la mayoría de las fuentes de agua potable también superaban los umbrales aceptables (10–6), lo que indicaba un mayor riesgo de cáncer para la población.

抽象

赞比亚南部省Siavonga区铀矿附近的饮用水源铀含量令人忧虑。饮用水源铀浓度中位数的下降趋势: 溪流(135.30 µg/L) >大坝(115.62 µg/L) >钻孔(111.31 µg/L) >浅井(110.03 µg/L)。所有水样铀含量都已超过世界卫生组织建议的饮用水安全界限标准, 水已不宜安全饮用。所有水样的平均靶标危害系数(THQ)都已超过安全极限(THQ >1), 意味着饮用者面临更大的潜在非致癌健康影响风险。多数饮用水源的铀致癌风险也超过了可接受极限值 (10–6), 存在患癌人口增多风险。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Agency for Toxic Substances and Disease Registry ATSDR (2013) Agency for toxic substances and disease registry. A toxicological profile for uranium. U.S. Dept of Health and Human Services, Atlanta. https://www.atsdr.cdc.gov/toxprofiles/tp150.pdf. Accessed 10 Aug 2020

  • Alam MS, Cheng T (2014) Uranium release from sediment to groundwater: influence of water chemistry and insights into release mechanisms. J Contam Hydrol 64:72–87

    Google Scholar 

  • Ali MM, Ali ML, Islam MS, Rahman MZ (2016) Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh. Environ Nanotechnol Monit Manag 5:27–35

    Google Scholar 

  • Besada H, Martin P (2015) Mining codes in Africa: emergence of a ‘fourth’ generation? Camb Rev Int Aff 28:263–282

    Google Scholar 

  • Bhangare RC, Tiwari M, Ajmal PY, Sahu SK, Pandit GG (2013) Laser fluorimetric analysis of uranium inwater from Vishakhapatnam and estimation of health risk. Radiat Prot Environ 36:128–132

    Google Scholar 

  • Bomben AM, Equillor HE, Oliveira AA (1996) 226Ra and natural uranium in Argentinian bottled mineral waters. Rad Protect Dosim 67:221–224

    Google Scholar 

  • Bou-Rabee, (1995) Estimating the concentration of uranium in some environmental samples in Kuwait after the 1991 Gulf War. Appl Radiat Isot 46:217–220

    Google Scholar 

  • Brown A, Steenfelt A, Kunzzenorf H (1983) Uranium districts defined by reconnaissance geochemistry in South Greenland. J Geochem Explor 19:127–145

    Google Scholar 

  • Brugge D, Buchner V (2011) Health effects of uranium: new research findings. Rev Environ Health 26(4):231–249

    Google Scholar 

  • Canada H (2020) Guidelines for Canadian drinking water quality guideline technical document-uranium. In: Aem. https://www.canada.ca/en/health-canada/services/publications/healthy-living/guidelines-canadian-drinking-water-quality-guideline-technical-document-uranium.html. Accessed 31 May 2020

  • Canu IG, Laurent O, Pires N, Laurier D, Dublineau I (2011) Health effects of naturally radioactive water ingestion: the need for enhanced studies. Environ Health Perspect 119:1676–1680

    Google Scholar 

  • Carvalho FP, Oliveira JM, Lopes I, Batista A (2007) Radionuclides from past uranium mining in rivers of Portugal. J Environ Radioact 98:298–314

    Google Scholar 

  • Carvalho F, Oliveira J, Malta M (2009) Analyses of radionuclides in soil, water, and agriculture products near the Urgeiriça uranium mine in Portugal. J Radioanal Nucl Chem 281:479–484

    Google Scholar 

  • Centeno J, Finkelman R, Selinus O (2016) Medical geology: impacts of the natural environment on public health. Geosci 6:827–836

    Google Scholar 

  • Conde M, Kallis G (2012) The global uranium rush and its Africa frontier. Effects, reactions and social movements in Namibia. Glob Environ Change 22:596–610

    Google Scholar 

  • Cothern CR, Lappenbusch WL (1983) Occurrence of uranium in drinking water in the US. Health Phys 45:89–99

    Google Scholar 

  • Dublineau I, Souidi M, Gueguen Y, Lestaevel P, Bertho JM, Manens L, Delissen O, Grison S, Paulard A, Monin A, Kern Y, Rouas C, Loyen J, Gourmelon P, Aigueperse J (2014) Unexpected lack of deleterious effects of uranium on physiological systems following a chronic oral intake in adult rat. BioMed Res Int. https://doi.org/10.1155/2014/181989

  • EFSA (European Food Safety Authority) (2009) Uranium in foodstuffs, in particular mineral water: uranium in food. EFSA J 7:1018

    Google Scholar 

  • Eggers M, Doyle J, Lefthand MJ, Young SL, Moore-Nall AL, Kindness L, Medicine RO, Ford TE, Dietrich E, Parker AE, Hoover JH, Camper AK (2018) Community engaged cumulative risk assessment of exposure to inorganic well water contaminants, Crow Reservation, Montana. Int J Environ Res Public Health 15:76–109

    Google Scholar 

  • Erdei E, Shuey C, Pacheco B, Cajero M, Lewis J, Rubinc RL (2019) Elevated autoimmunity in residents living near abandoned uranium mine sites on the Navajo Nation. J Autoimmun 99:15–23

    Google Scholar 

  • Essien OE (2014) Comparative pollution contribution of three point sources of pollution to urban drainage stream degradation, Uyo. Am J Water Resour 2(1):10–17

    Google Scholar 

  • FisenneI M, Welford GA (1986) Natural U concentration in soft tissues and bone of New York City residents. Health Phys 50:739–746

    Google Scholar 

  • Frengstad B, Skrede AK, Banks D, Krog JR, Siewers U (2000) The chemistry of Norwegian groundwaters: III. The distribution of trace elements in 476 crystalline bedrock ground waters, as analysed by ICP–MS techniques. Sci Total Environ 246:21–40

    Google Scholar 

  • Garboś S, Święcicka D (2015) Human health risk assessment of uranium in drinking water sampled from drilled wells located in rural areas of the Lower Silesian region (Poland) / Ocena ryzyka zdrowotnego związanego z obecnością uranu w wodzie przeznaczonej do spożycia pobieranej z wierconych studni zlokalizowanych na obszarach wiejskich Dolnego Śląska (Polska). Arch Environ Prot 41:21–27

    Google Scholar 

  • Garg VK, Yadav A, Singh KJ, Singh M, Bishnoi M, Pulhani V (2014) Uranium concentration in groundwater in Hisar city, India. Int J Occup Environ Med 5:112–114

    Google Scholar 

  • Gedeon R, Amro H, Jawawdeh J Kulani S (1994) Natural radioisotopes in groundwaters from the Amman-Zarka basin, Jordan: hydrochemical and regulatory implications. Appl Trac Arid Zone Hydrol (Proc Vienna Symp, August 1994). IAHS Publ. no. 23

  • Giri S, Singh G, Jha VN, Tripathi RM (2011) Risk assessment due to ingestion of natural radionuclides and heavy metals in the milk samples: a case study from a proposed uranium mining area, Jharkhand. Environ Monit Assess 175:157–166

    Google Scholar 

  • Haakonde T, Lingenda G, Munsanje F, Chishimba K (2018) Assessment of factors affecting the implementation of the integrated disease surveillance and response in public health care facilities - the case of Rufunsa district, Zambia. Diver Equal Health Care 15(1):15–22

    Google Scholar 

  • Hakonson-Hayes AC, Fresquez PR, Whicker FW (2002) Assessing potential risks from exposure to natural uranium in well water. J Environ Radioact 59:29–40

    Google Scholar 

  • He L, Gao B, Luo X, Jiao JJ, Qin H, Zhang C, Dong Y (2018) Health risk assessment of heavy metals in surface water near a uranium tailing pond in Jiangxi Province, south China. Sustainability 10:1113

    Google Scholar 

  • Hinck JE, Linder G, Finger S, Little E, Tillitt D, Kuhne W (2010) Biological pathways of exposure and ecotoxicity values for uranium and associated radionuclides. Hydrological, geological, and biological sites characterization of breccia pipe uranium deposits in northern Arizona. US Geol Surv Sci Investig Rep 5025:283–353

    Google Scholar 

  • Höllriegl V, Arogunjo AM, Giussani A, Michalke B, Oeh U (2011) Daily urinary excretion of uranium in members of the public of southwest Nigeria. Sci Total Environ 412:344–350

    Google Scholar 

  • International Commission on Radiological Protection (ICR) (1996) Age-dependent doses to the members of the public from intake of radionuclides part 5: compilation of ingestion and inhalation coefficients. Pergamon Press, Oxford (ICRP Publication 72; Ann ICRP 26/1)

    Google Scholar 

  • Islam MS, Han S, Ahmed MK, Masunaga S (2014) Assessment of trace metal contamination in water and sediment of some rivers in Bangladesh. J Water Environ Technol 12:109–121

    Google Scholar 

  • Islam MS, Ahmed MK, Al-Mamun MH, Hoque MF (2015a) Preliminary assessment of heavy metal contamination in surface sediments from a river in Bangladesh. Environ Earth Sci 73:1837–1848

    Google Scholar 

  • Islam MS, Ahmed MK, Raknuzzaman M, Al-Mamun MH, Islam MK (2015b) Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country. Ecol Indic 48:281–292

    Google Scholar 

  • Islam MS, Islam MS, Al-Mamun MH, Islam SMA, Dennis E (2016) Total and dissolved metals in the industrial wastewater: a case study from Dhaka metropolitan, Bangladesh. Environ Nanotechnol Monit Manag 5:74–80

    Google Scholar 

  • Islam MS, Ahmed MK, Al-Mamun MH, Eaton DW (2017) Arsenic in the food chain and assessment of population health risks in Bangladesh. Environ Syst Decis 37:344–352

    Google Scholar 

  • Islam MS, Proshad R, Ahmed S (2018) Ecological risk of heavy metals in sediment of an urban river in Bangladesh. Hum Ecol Risk Assess 24(3):699–720

    Google Scholar 

  • Katz S (2014) The chemistry and toxicology of depleted uranium. Toxics 2:50–78

    Google Scholar 

  • Kaur S, Mehra R (2019) Toxicological risk assessment of protracted ingestion of uranium in groundwater. Environ Geochem Health 41:681–698

    Google Scholar 

  • Kormoker T, Proshad R, Islam MS, Shamsuzzoha M, Akter A, Tusher TR (2020a) Concentrations, source apportionment and potential health risk of toxic metals in foodstuffs of Bangladesh. Toxin Rev. https://doi.org/10.1080/15569543.2020.1731551

    Article  Google Scholar 

  • Kormoker T, Proshad R, Islam MS, Tusher TR, Uddin M, Khadka S, Chandra K, Sayeed A (2020b) Presence of toxic metals in rice with human health hazards in Tangail district of Bangladesh. Int J Environ Health Res. https://doi.org/10.1080/09603123.2020.1724271

    Article  Google Scholar 

  • Kumar A, Usha N, Sawant PD, Tripathi RM, Raj SS, Mishra M, Rout S, Supreeta P, Singh J, Kumar S, Kushwaha HS (2011) Risk assessment for natural uranium in subsurface water of Punjab State, India. Hum Ecol Risk Assess 17(2):381–393

    Google Scholar 

  • Kumar MP, Prerna S, Akash K, Prasad MK (2015) Uranium in ground water of eastern Uttar Pradesh, India: a preliminary study. Int Res J Environ Sci 4:70–74

    Google Scholar 

  • Kumru MN (1995) Distribution of radionuclides in sediments and soils along the Büyük Menderes River. Proc Pak Acad Sci 32:51–56

    Google Scholar 

  • Kurttio P, Komulainen H, Leino A, Salonen L, Auvinen A, Saha H (2005) Bone as a possible target of chemical toxicity of natural uranium in drinking water. Environ Health Perspect 113(1):68–72

    Google Scholar 

  • Kurttio P, Harmoinen A, Saha H, Salonen L, Karpas Z, Komulainen H, Auvinen A (2006) Kidney toxicity of ingested uranium from drinking water. Am J Kidney Dis 47:972–982

    Google Scholar 

  • Lariviere D, Tolmachev SY, Kochermin V, Johnson S (2013) Uranium bone content as an indicator of chronic environmental exposure from drinking water. J Environ Radioact 121:98–103

    Google Scholar 

  • Lewis J, Gonzales M, Burnette C, Benally M, Seanez P, Shuey C, Nez H, Nez C, Nez S (2015) Environmental exposures to metals in native communities and implications for child development: basis for the Navajo birth cohort study. J Soc Work Disabil Rehabil 14:245–269

    Google Scholar 

  • Mason B, Moore CB (1982) Principles of geochemistry. Wiley, New York City

    Google Scholar 

  • Maxwell O, Wagiran H, Adewoyin O, Joel ES, Adeleye N, Embong Z, Tenebe IT (2017) Radiological and chemical toxicity risks of uranium in groundwater based-drinking at immigration headquarters Gosa and federal housing Lugbe area of Abuja, north central Nigeria. J Radioanal Nucl Chem 311:1185–1191

    Google Scholar 

  • McCal WL, Christy TM, Christopherson T, Issacsk H (2009) Application of direct push methods to investigate uranium distribution in an alluvial aquifer. Ground Water Monit Remed 29(4):65–76

    Google Scholar 

  • Muhib MI, Chowdhury MAZ, Easha NJ, Rahman MM, Shammi M, Fardous Z, Bari ML, Uddin MK, Kurasaki M, Alam MK (2016) Investigation of heavy metal contents in cow milk samples from area of Dhaka, Bangladesh. Int J Food Contam 3:1–10

    Google Scholar 

  • National Statistical Agency (NSA) (2019) Zambia demographic and health survey. Government Printers, Lusaka

    Google Scholar 

  • Neiva AMR, de Carvalho PCS, Antunes IMHR, Pinto MMSC, Santos ACT, Cunha PP, Costa MM (2016) Spatial variability of soils and stream sediments and the remediation effects in a Portuguese uranium mine area. Geochem 76:501–518

    Google Scholar 

  • Nozaki T, Ichikawa M, Sasuga T, Inarida MJ (1970) Neutron activation analysis of uranium in human bone, drinking water and daily diet. J Radioanal Chem 6:33–40

    Google Scholar 

  • Nriagu J, Nam DH, Ayanwola TA, Dinh H, Erdenechimeg E, Ochir C, Bolormaa TA (2012) High levels of uranium in groundwater of Ulaanbaatar, Mongolia. Sci Total Environ 414:722–726

    Google Scholar 

  • Nyambe IA, Dixon O (2000) Sedimentology of the Madumabisa mudstone formation (late Permian), lower Karoo Group, mid-Zambezi Valley Basin, southern Zambia. J Afr Earth Sci 30:535–553

    Google Scholar 

  • OMEE (Ontario Ministry of Environment and Energy) (1996) Monitoring data for uranium; 1990-1995. Ontario Drinking Water Surveillance Program, Toronto

  • Onsekizoglu P (2012) Membrane distillation: principle, advances, limitations and future prospects in food industry. Distill Adv Model Appl 282:233–266

    Google Scholar 

  • Pandey LK, Park J, Son DH, Kim W, Islam MS, Choi S, Lee H, Han T (2019) Assessment of metal contamination in water and sediments from major rivers in South Korea from 2008 to 2015. Sci Total Environ 651:323–333

    Google Scholar 

  • Proshad R, Kormoker T, Islam MS, Saha BC, Hossain MR, Prince MH, Khan MM (2017) An apportionment of arsenic and iron contamination of tube-well groundwater with possible health risk in Bangladesh. J Environ Pollut Hum Health 5:117–123

    Google Scholar 

  • Proshad R, Islam MS, Tusher TR, Zhang D, Khadka S, Gao J, Kundu S (2020) Appraisal of heavy metal toxicity in surface water with human health risk by a novel approach: a study on an urban river in vicinity to industrial areas of Bangladesh. Toxin Rev. https://doi.org/10.1080/15569543.2020.1780615

    Article  Google Scholar 

  • Rahman MS, Saha N, Molla AH (2014) Potential ecological risk assessment of heavy metal contamination in sediment and water body around Dhaka export processing zone, Bangladesh. Environ Earth Sci 71:2293–2308

    Google Scholar 

  • Raknuzzaman M, Ahmed MK, Islam MS, Al-Mamun MH, Tokumura M, Sekine M, Masunaga S (2016) Assessment of trace metals in surface water and sediment collected from polluted coastal areas of Bangladesh. J Water Environ Technol 4:247–259

    Google Scholar 

  • Rani A, Mehra R, Duggal V, Balaram V (2013) Analysis of uranium concentration in drinking water samples using ICPMS. Health Phys 104:251–255

    Google Scholar 

  • Selden AL, Lundholm C, Edlund B, Hogdahl C, Ek BM, Bergstroma BE, Ohlson CG (2009) Nephrotoxicity of uranium in drinking water from private drilled wells. Environ Res 109:486–494

    Google Scholar 

  • Shelley R, Kim N-S, Parsons PJ, Lee BK, Agnew J, Jaar BG, Steuerwald AJ, Matanoski G, Fadrowski J, Schwartz BS, Todd AC, Simon D, Weaver VM (2014) Uranium associations with kidney outcomes vary by urine concentration adjustment method. J Expo Sci Environ Epidemiol 24:58–64

    Google Scholar 

  • Singh S, Malhotra R, Kumar J, Singh B, Singh L (2001) Uranium analysis of geological samples, water and plants from Kulu Area, Himachal Pradesh, India. Radiat Meas 34:427–431

    Google Scholar 

  • Singh L, Kumar R, Kumar S, Bajwa BS, Singh S (2013) Health risk assessments due to uranium contamination of drinking water in Bathinda region, Punjab state, India. Radioprotection 48:191–202

    Google Scholar 

  • Soderland P, Weiner DE, Brooks DR, Kaufman JS (2010) Chronic kidney disease associated with environmental toxins and exposures. Adv Chronic Kidney Dis 17:254–264

    Google Scholar 

  • Starościak E, Rosiak L (2015) Determination of uranium reference levels in the urine of Warsaw residents (Poland). J Radioanal Nucl Chem 304:75–79

    Google Scholar 

  • Tusher TR, Sarker ME, Nasrin S, Kormoker T, Proshad R, Islam MS, Al-Mamun S, Tareq ARM (2020) Contamination of toxic metals and polycyclic aromatic hydrocarbons (PAHs) in rooftop vegetables and human health risks in Bangladesh. Toxin Rev. https://doi.org/10.1080/15569543.2020.1767650

    Article  Google Scholar 

  • USEPA (U.S. Environmental Protection Agency) (1989) Risk assessment guidance for Superfund. Volume I: Human health evaluation manual (Part A). Interim Final Office of Emergency and Remedial Response. EPA/540/1-89/002

  • USEPA (1990) Occurrence and exposure assessment for uranium in public drinking water supplies. Accessed 6 July 2020

  • USEPA (1991) Human health evaluation manual, supplemental guidance: "Standard default exposure factors ". OSWER Directive 9285.6-03

  • USEPA (1999) Integrated risk information system on uranium, soluble salts. National Centre for Environmental Assessments, Office of Research and Development, Washington, DC

  • USEPA (2010) Integrated risk information system on uranium, soluble salts. National Centre for Environmental Assessments, Office of Research and Development, Washington, DC

  • Ustaoğlu FT, Islam MS (2020) Potential toxic elements in sediment of some rivers at Giresun, northeast urkey: a preliminary assessment for ecotoxicological status and health risk. Ecol Indic 113:106237–106251

    Google Scholar 

  • Vicente-Vicente L, Quiros Y, Pérez-Barriocanal F, López-Novoa JM, López-Hernández FJ, Morales AI (2010) Nephrotoxicity of uranium: pathophysiological, diagnostic and therapeutic perspectives. Toxicol Sci 118:324–347

    Google Scholar 

  • Wagner SE, Burch JB, Bottai M, Puett R, Porter D, Bolick-Aldrich S, Temples T, Wilkerson RC, Vena JE, Hébert JR (2011) Groundwater uranium and cancer incidence in South Carolina. Cancer Causes Control 22:41–50

    Google Scholar 

  • Web Information Systems Engineering - WISE (2008) Proc 9th International 462:802–812

  • WHO (World Health Organization) (2004) Guidelines for drinking-water quality, vol. 1, recommendations, 3rd edition, Geneva

  • WHO (2009) Policies and procedures used in updating the WHO guidelines for drinking water quality. Public Health and the Environment World Health Organization Summit, Geneva

  • WHO (2011) Uranium in drinking water. Background document for development of WHO guidelines for drinking water quality. WHO/SDE/WSH/03.04/118/Rev/1, Geneva

  • Winde F (2013) Uranium pollution of water: a global perspective on the situation in South Africa. North-West University, Vaal Triangle Campus, Vanderbijlpark

  • Wu WM, Carley J, Green SJ, Luo J, Kelly SD, van Nostrand J, Lowe K, Mehlhorn T, Carroll S, Boonchayanant B, Löffler FE, Watson D, Kemner KM, Zhou J, Kitanidis PK, Kostka JE, Jardine PM, Criddle CS (2010) Effects of nitrate on the stability of uranium in a bioreduced region of the subsurface. Environ Sci Technol 44:5104–5111

    Google Scholar 

  • Wu Y, Wang YX, Xie XJ (2014) Occurrence, behavior and distribution of high levels of uranium in shallow groundwater at Datong basin, northern China. Sci Total Environ 472:809–817

    Google Scholar 

  • Wufuer R, Song W, Zhang D, Pan X, Gadd GM (2018) A survey of uranium levels in urine and hair of people living in a coal mining area in Yili, Xinjiang, China. J Environ Radioact 189:168–174

    Google Scholar 

  • Yabe J, Ishizuka M, Umemura T (2010) Current levels of heavy metal pollution in Africa. J Vet Med Sci 72:1257–1263

    Google Scholar 

  • Yang Q, Smitherman P, Hess CT, Culbertson CW, Marvinney RG, Smith AE, Zheng Y (2014) Uranium and radon in private bedrock well water in Maine: geospatial analysis at two scales. Environ Sci Technol 48(8):4298–4306

    Google Scholar 

  • Zamora ML, Tracy BL, Zielinski JM, Meyerhof DP, Moss MA (1998) Chronic ingestion of uranium in drinking water: a study of kidney bioeffects in humans. Toxicol Sci 43:68–77

    Google Scholar 

  • ZEMA (Zambia Environmental Management Agency) (2000) Environmental outlook. Government Printers, Lusaka

    Google Scholar 

  • Zhang Q, Hu XQ, Zou SR, Zuo JL, Liu ZH, Pan Q, Liu CX, Pan H, Ma GS (2011) Water intake of adults in four cities in China in summer. Chin J Prev Med 45:677–682

    Google Scholar 

Download references

Acknowledgements

We acknowledge the Ministry of Higher Education’s Department of Science and Technology for support under the Science and Technology Postgraduate Scholarships. We also express our sincere gratitude to the laboratory staff at Central Veterinary Research Institute in Toxicology and Biochemistry Laboratory and at the Zambia Agricultural Research Institute for helping with quality control and protocols for the study. Ethical clearance consistent with the School of Veterinary Medicine of the University of Zambia was obtained from Excellence in Research Ethics and Science (ERES) Converge, reference # “2019-Nov-015.” Permission to conduct the research was obtained from the National Health Research Authority on Dec. 23, 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Saiful Islam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haakonde, T., Yabe, J., Choongo, K. et al. Preliminary Assessment of Uranium Contamination in Drinking Water Sources Near a Uranium Mine in the Siavonga District, Zambia, and Associated Health Risks. Mine Water Environ 39, 735–745 (2020). https://doi.org/10.1007/s10230-020-00731-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-020-00731-5

Keywords

Navigation