Skip to main content

Advertisement

Log in

Effect of Pressure on Inclusion Number Distribution During the Solidification Process of H13 Die Steel Ingot

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In order to clarify the influence mechanism of high pressure on inclusion number distribution, the changes in phase transition sequences, key properties, and heat transfer boundary conditions with pressure have been investigated. Furthermore, the inclusion number distribution of H13 die steel ingot under different pressures (0.1, 1, and 2 MPa) has been numerically simulated by the mathematical model verified using the experimental results of cooling rate and the parameter ηn. The changes in key properties and phase transition sequences with pressure were investigated by Thermo-Calc software. With increasing pressure from 0.1 to 1000 MPa, the suppression of ferritic phase (δ) formation and improvement of liquidus/solidus temperature are obvious, but the density, thermal expansion coefficient, specific heat, and latent heat of solidification barely change. Meanwhile, the effect of pressure on heat transfer boundary conditions has been quantitatively revealed with formulas proposed by experimental measurement and numerical calculation: hf,0.1 = 1137.4t−0.23 (for 0.1 MPa), hf,1.0 = 1294.3t−0.23 (for 1 MPa), and hf,2.0 = 1501.6t−0.23 (for 2 MPa). During solidification process, gravity, buoyancy, and drag forces play the key roles in affecting the movement behavior of inclusions. Moreover, their net force drives inclusions to sink downward near the tip of columnar dendrite, and move counterclockwise. With increasing pressure from 0.1 to 2 MPa, the enrichment degrees of inclusions in ingot decrease, and the distribution of inclusion number becomes more uniform due to the stronger escaping ability of inclusions and the weaker inclusion trapping ability of the mushy zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. H. Feichtinger and G. Stein: Mater. Sci. Forum, 1999, vol. 318, pp. 261-70.

    Google Scholar 

  2. G. Stein and I. Hucklenbroich: Mater. Manuf. Processes, 2004, vol. 19, pp. 7-17.

    CAS  Google Scholar 

  3. J.J. Sobczak, L. Drenchev, and R. Asthana: Int. J. Cast Met. Res., 2013, vol. 25, pp. 1-14.

    Google Scholar 

  4. J. Zhang, K. Qiu, A. Wang, H. Zhang, M. Quan, and Z. Hu: J. Mater. Sci. Techon. (China), 2004. vol. 20, pp. 106-108.

    Google Scholar 

  5. R. Arola, J. Wendt, and E. Kivineva: Mater. Sci. Forum, 1999, vol. 318, pp. 297-302.

    Google Scholar 

  6. H.C. Zhu, Z.H. Jiang, H.B. Li, H. Feng, W.C. Jiao, S.C. Zhang, P.B. Wang, and J.H. Zhu: ISIJ Int., 2018, vol. 58, pp. 1267-74.

    CAS  Google Scholar 

  7. M. Ridolfi and O. Tassa: Intermetallics, 2003, vol. 11, pp. 1335-38.

    CAS  Google Scholar 

  8. H. Feng, Z.H. Jiang, H.B. Li, P. Lu, S.C. Zhang, H.C. Zhu, B.B. Zhang, T. Zhang, D.K. Xu, and Z.G. Chen: Corros. Sci., 2018, vol. 144, pp. 288-300.

    CAS  Google Scholar 

  9. Z.H. Jiang, H.B. Li, Z.P. Chen, Z.G. Huang, D.L. Zou, and L.K. Liang: Steel Res. Int., 2005, vol. 76, pp. 740-45.

    CAS  Google Scholar 

  10. H. Feng, H.B. Li, Z.H. Jiang, T. Zhang, N. Dong, S.C. Zhang, P.D. Han, S. Zhao, and Z.G. Chen: Corros. Sci., 2019, vol. 158, p. 108081.

    CAS  Google Scholar 

  11. W.C. Jiao, H.B. Li, H. Feng, Z.H. Jiang, J. Dai, H.C. Zhu, S.C. Zhang, M.S. Chu, and W. Wu: ISIJ Int., 2020, vol. 60, pp. 564-72.

    CAS  Google Scholar 

  12. R.D. Li, Z.P. Huang, Y.H. Bai, Q.S. Zhang, and H.F. Zhang, Foundry, 2003, vol. 52, pp. 92-94.

    CAS  Google Scholar 

  13. J.L. Lu, Y.P. Wang, Q.M. Wang, H.J. Cheng, and G.G. Cheng: ISIJ Int., 2019, vol. 59, pp. 524-30.

    CAS  Google Scholar 

  14. S.B. Hosseini, C. Temmel, B. Karlsson, and N.-G. Ingesten: Metall. Mater. Trans. A, 2007, vol. 38, pp. 982-89.

    CAS  Google Scholar 

  15. H. Atkinson and G. Shi: Prog. Mater Sci., 2003, vol. 48, pp. 457-20.

    CAS  Google Scholar 

  16. T.D. Lee, T. Goldenberg, and J. Hirth: Metall. Mater. Trans. A, 1979, vol. 10, pp. 199-208.

    CAS  Google Scholar 

  17. K. Watanabe, H. Goto, and M. Itagaki: ISIJ Int., 2003, vol.43, pp. 1767-72.

    CAS  Google Scholar 

  18. B.H. Sun, W. Krieger, M. Rohwerder, D. Ponge, and D. Raabe: Acta Mater., 2020, vol. 183, pp. 313-28.

    CAS  Google Scholar 

  19. J.H. Shim, Y.J. Oh, J.Y. Suh, Y.W. Cho, J.D. Shim, J.S. Byun, and D.N. Lee: Acta Mater., 2001, vol. 49, pp. 2115-222.

    CAS  Google Scholar 

  20. T.B. Braun, J.F. Elliott, and M.C. Flemings: Metall. Mater. Trans. B, 1979, vol. 10, pp. 171-84.

    CAS  Google Scholar 

  21. K. Uemura, M. Takahashi, S. Koyama, and M. Nitta: ISIJ Int., 1992, vol. 32, pp. 150-56.

    CAS  Google Scholar 

  22. S. Taniguchi and J.K. Brimacombe: ISIJ Int. 1994, vol. 39, pp. 722-31.

    Google Scholar 

  23. B.G. Thomas, Q. Yuan, S. Mahmood, R. Liu, and R. Chaudhary: Metall. Mater. Trans. B, 2014, vol. 45, pp. 22-35.

    Google Scholar 

  24. K. Sasai and Y. Mizukami: ISIJ Int., 2001, vol. 41, pp. 1331-39.

    CAS  Google Scholar 

  25. M.J. Long, X.J. Zuo, L.F. Zhang, and D.F. Chen: ISIJ Int., 2010, vol. 50, pp. 712-20.

    CAS  Google Scholar 

  26. G. Enif, G.-H. Saul, and B.J.D. Jesús: ISIJ Int., 2016, vol. 56, pp. 1394-403.

    Google Scholar 

  27. Q. Wang, R.T. Wang, Z. He, G.Q. Li, B.K. Li, and H.B. Li: Int. J. Heat Mass Transfer, 2018, vol. 125, pp. 1333-44.

    Google Scholar 

  28. L.T. Wang, S.H. Peng, Q.Y. Zhang, and Z.B. Li: Steel Res. Int., 2006, Vol. 77, pp. 25-31.

    CAS  Google Scholar 

  29. P. Ni, L.T.I. Jonsson, M. Ersson, and P.G. Jönsson: Steel Res. Int., 2017, vol. 88, p. 1700155.

    Google Scholar 

  30. D.X. Cai, F.L. Ren, H.H. Ge, H.S. Kim, J. Li, and J.G. Li: Metall. Mater. Trans. A, 2019, vol. 50, pp. 1323-32.

    Google Scholar 

  31. B. Li and F. Tsukihashi: ISIJ Int., 2003, vol. 43, pp. 923-31.

    CAS  Google Scholar 

  32. H.J. Duan, Y. Ren, and L.F. Zhang: Metall. Mater. Trans. B, 2019, vol. 50, pp. 1476-89.

    Google Scholar 

  33. Y. Liu, M. Ersson, H.P. Liu, P.G. Jönsson, and Y. Gan: Metall. Mater. Trans. B, 2019, vol. 50, pp. 555-77.

    Google Scholar 

  34. A.F. Ilkhchy, M. Jabbari, and P. Davami: Int. J. Heat Mass Transfer, 2012, vol. 39, pp. 705-12.

    Google Scholar 

  35. J.A. Sekhar, G.J. Abbaschian, and R. Mehrabian: Mater. Sci. & Eng., 1979, vol. 40, pp. 105-10.

    CAS  Google Scholar 

  36. H. Lei, Y. Zhao, and D.Q. Geng: ISIJ Int., 2014, vol. 54, pp. 1629-37.

    CAS  Google Scholar 

  37. H.C. Zhu, H.B. Li, S.C. Zhang, K.B. Li, G.H. Liu, Z.H. Jiang, X. Geng, and P.D. Han: Ironmaking Steelmaking, 2015, vol. 42, pp. 748-55.

    CAS  Google Scholar 

  38. J. Li, M.H. Wu, A. Ludwig, and A. Kharicha: Int. J. Heat Mass Transfer, 2014, vol. 72, pp. 668-79.

    CAS  Google Scholar 

  39. M.H. Wu, Y. Zheng, A. Kharicha, and A. Ludwig: Comput. Mater. Sci., 2016, vol. 124, pp. 444-55.

    CAS  Google Scholar 

  40. M. Wu and A. Ludwig: Metall. Mater. Trans. A, 2006, vol. 37, pp. 1613-31.

    CAS  Google Scholar 

  41. M.A. Martorano, C. Beckermann, and C.-A. Gandin: Metall. Mater. Trans. A, 2003, vol. 34, pp. 1657-74.

    CAS  Google Scholar 

  42. J. Lipton, M. Glicksman, and W. Kurz: Mater. Sci. Eng., 1984, vol. 65, pp. 57-63.

    CAS  Google Scholar 

  43. Y. Zheng, M.H. Wu, A. Kharicha, and A. Ludwig: Comput. Mater. Sci., 2016, vol. 124, pp. 456-70.

    CAS  Google Scholar 

  44. M. Ishii and N. Zuber: AIChE J., 1979, vol. 25, pp. 843-55.

    CAS  Google Scholar 

  45. W.S. Li, H.F. Shen, and B.C. Liu: Int. J. Min. Met. Mater, 2012, vol. 19, pp. 787-94.

    CAS  Google Scholar 

  46. R.B. Bird: Appl. Mech. Rev., 2002, vol. 55, pp. 205-07.

    Google Scholar 

  47. M.H. Wu, A. Ludwig, and A. Kharicha: Appl Math Model, 2017, vol. 41, pp. 102-20.

    Google Scholar 

  48. H.B. Li and Z.H. Jiang: Journal of Northestern University Natural Science, 2007, vol. 28, pp. 672-75.

    CAS  Google Scholar 

  49. H.C. Zhu, Z.H. Jiang, H.B. Li, P.B. Wang, and J.H. Zhu: Steel Res. Int., 2018, vol. 89, p. 1700475.

    Google Scholar 

  50. H.C. Zhu, Z.H. Jiang, H.B. Li, J.H. Zhu, H. Feng, S.C. Zhang, B.B. Zhang, P.B. Wang, and G.H. Liu: Steel Res. Int., 2017, vol. 88, p. 1600509.

    Google Scholar 

  51. R. Xu, H. Zhao, J. Li, R. Liu, and W. Wang: Materi. Lett., 2006, vol. 60, pp. 783-85.

    CAS  Google Scholar 

  52. Z.H. Jiang, H.C. Zhu, H.B. Li, G.H. Liu, P.B. Wang, J.H. Zhu, S.C. Zhang, and H. Feng: ISIJ Int., 2017, vol. 1 pp. 107-13.

    Google Scholar 

Download references

Acknowledgments

The present research was financially supported by the National Natural Science Foundation of China (No. U1960203, 51904065 and 51774074), Project funded by China Postdoctoral Science Foundation (No. 2019M651133), Fundamental Research Funds for the Central Universities (No. N182503028, N172512033 and N2024005-4), and Talent Project of Revitalizing Liaoning (XLYC1902046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Bing Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 20, 2020; accepted September 22, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, HC., Li, HB., He, ZY. et al. Effect of Pressure on Inclusion Number Distribution During the Solidification Process of H13 Die Steel Ingot. Metall Mater Trans B 51, 2976–2992 (2020). https://doi.org/10.1007/s11663-020-01984-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01984-9

Navigation