Skip to main content
Log in

Complete Integrability of Diffeomorphisms and Their Local Normal Forms

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we consider the normal form problem of a commutative family of germs of diffeomorphisms at a fixed point, say the origin, of \(\mathbb {K}^n (\mathbb {K}={\mathbb {C}}\text {~or~} {\mathbb {R}})\). We define a notion of integrability of such a family. We give sufficient conditions which ensure that such an integrable family can be transformed into a normal form by an analytic (resp. a smooth) transformation if the initial diffeomorphisms are analytic (resp. smooth).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics 60. Springer, New York (1989)

    Book  Google Scholar 

  2. Arnold, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations. Grundlehren der Mathematischen Wissenschaften, 250. Springer, New York (1988)

    Book  Google Scholar 

  3. Bogoyavlenskij, O.I.: Extended integrability and bi-Hamiltonian systems. Commun. Math. Phys. 196(1), 19–51 (1998)

    Article  MathSciNet  Google Scholar 

  4. Bambusi, D., Stolovitch, L.: Convergence to normal forms of integrable PDEs. Commun. Math. Phys. (2020). https://doi.org/10.1007/s00220-019-03661-8

    Article  MathSciNet  MATH  Google Scholar 

  5. Chaperon, M.: Géométrie différentielle et singularités de systèmes dynamiques. Astérisque 138–139, 444 (1986)

    MATH  Google Scholar 

  6. Chaperon, M.: A forgotten theorem on \(\mathbb{Z}^k\times \mathbb{R}^m\)-action germs and related questions. Regul. Chaotic Dyn. 18(6), 742–773 (2013)

    Article  MathSciNet  Google Scholar 

  7. Culver, W.: On the existence and uniqueness of the real logarithm of a matrix. Proc. Am. Math. Soc. 17(5), 1146–1151 (1966)

    Article  MathSciNet  Google Scholar 

  8. Eliasson, H.: Hamiltonian systems with Poisson commuting integrals. Ph.D. Thesis, University of Stockholm (1984)

  9. Eliasson, H.: Normal forms for Hamiltonian systems with Poisson commuting integrals-elliptic case.arii Math. Helv. 65(1), 4–35 (1990)

    Article  MathSciNet  Google Scholar 

  10. Gantmakher, F.R.: The Theory of Matrices. American Mathematical Society, Providence (1959)

    Google Scholar 

  11. Gong, X., Stolovitch, L.: Real submanifolds of maximum complex tangent space at a CR singular point, I. Invent. Math. 206(2), 293–377 (2016)

    Article  MathSciNet  Google Scholar 

  12. Ito, H.: Convergence of Birkhoff normal forms for integrable systems. Comment. Math. Helv. 64(1), 412–461 (1989)

    Article  MathSciNet  Google Scholar 

  13. Ito, H.: Integrability of Hamiltonian systems and Birkhoff normal forms in the simple resonance case. Math. Annal. 292(1), 411–444 (1992)

    Article  MathSciNet  Google Scholar 

  14. Jiang, K.: Local normal forms of smooth weakly hyperbolic integrable systems. Regul. Chaotic Dyn. 21(1), 18–23 (2016)

    Article  MathSciNet  Google Scholar 

  15. Kappeler, T., and Pöschel, J.: KdV & KAM, volume 45 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Berlin (2003)

  16. Kuksin, S., Perelman, G.: Vey theorem in infinite dimensions and its application to KdV. Discrete Contin. Dyn. Syst. 27(1), 1–24 (2010)

    Article  MathSciNet  Google Scholar 

  17. Li, W., Llibre, J., Zhang, X.: Extension of Floquet’s theory to nonlinear periodic differential systems and embedding diffeomorphisms in differential flows. Am. J. Math. 124(1), 107–127 (2002)

    Article  MathSciNet  Google Scholar 

  18. Liouville, J.: Note sur l’intégration des équations différentielles de la Dynamique, présentée au Bureau des Longitudes le 29 juin 1853. J. Math. Pures Appl. 137–138 (1855)

  19. Stolovitch, L.: Singular complete integrability. Publ. Math. l’Inst. Hautes Études Sci. 91(1), 133–210 (2000)

    Article  MathSciNet  Google Scholar 

  20. Stolovitch, L.: Normalisation holomorphe d’algèbres de type Cartan de champs de vecteurs holomorphes singuliers. Ann. Math. 161(2), 589–612 (2005)

    Article  MathSciNet  Google Scholar 

  21. Stolovitch, L.: Family of intersecting totally real manifolds of \((\mathbb{C}^n,0)\) and germs of holomorphic diffeomorphisms. Bull. Soc. Math. France 143(2), 247–263 (2015)

    Article  MathSciNet  Google Scholar 

  22. Veselov, A.P.: Integrable mappings. Uspekhi Mat. Nauk 46(5(281)), 3–45 (1991)

    MathSciNet  MATH  Google Scholar 

  23. Veselov, A.P.: Growth and integrability in the dynamics of mappings. Commun. Math. Phys. 145(1), 181–193 (1992)

    Article  MathSciNet  Google Scholar 

  24. Vey, J.: Sur certains systemes dynamiques séparables. Am. J. Math. 100(3), 591–614 (1978)

    Article  MathSciNet  Google Scholar 

  25. Walcher, S.: On differential equations in normal form. Math. Ann. 291(1), 293–314 (1991)

    Article  MathSciNet  Google Scholar 

  26. Zhang, X.: Analytic normalization of analytic integrable systems and the embedding flows. J. Differ. Equ. 244(5), 1080–1092 (2008)

    Article  MathSciNet  Google Scholar 

  27. Zhang, X.: Analytic integrable systems: analytic normalization and embedding flows. J. Differ. Equ. 254(7), 3000–3022 (2013)

    Article  MathSciNet  Google Scholar 

  28. Ziglin, S.L.: Branching of solutions and nonexistence of first integrals in Hamiltonian mechanics, I. Funct. Anal. Appl. 13(3), 181–189 (1982)

    Article  Google Scholar 

  29. Zung, N.T.: Convergence versus integrability in Birkhoff normal form. Ann. Math. 161(1), 141–156 (2005)

    Article  MathSciNet  Google Scholar 

  30. Zung, N.T.: Non-degenerate singularities of integrable dynamical systems. Ergod. Theory Dyn. Syst. 35(3), 994–1008 (2015)

    Article  MathSciNet  Google Scholar 

  31. Zung, N.T.: A conceptual approach to the problem of action-angle variables. Arch. Ration. Mech. Anal. 229(2), 789–833 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Stolovitch.

Additional information

A la mémoire de Walter

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been supported by the French government, through the UCAJEDI Investments in the Future project managed by the National Research Agency (ANR) with the reference Number ANR-15-IDEX-01 and by ANR project BEKAM with the reference number ANR-15-CE40-0001-03.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, K., Stolovitch, L. Complete Integrability of Diffeomorphisms and Their Local Normal Forms. J Dyn Diff Equat 33, 1179–1201 (2021). https://doi.org/10.1007/s10884-020-09902-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-020-09902-y

Keywords

Mathematics Subject Classification

Navigation