Skip to main content
Log in

Theoretical investigation of the electronic structure and anisotropic optical properties of quasi-1D Sb2Se3 photovoltaic absorber materials

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Sb2Se3 is a nontoxic, environmentally friendly photovoltaic absorber material with both a narrow bandgap and high absorption coefficient. The optical properties of Sb2Se3 crystals are theoretically studied herein using first-principles methods. The crystal structure, electronic structure, dielectric function, and absorption coefficient are calculated. The results show that the quasi-one-dimensional structure of Sb2Se3 has an indirect bandgap with a value of 0.953 eV. The bottom of the conduction band and the top of the valence band are mainly formed by Sb 5p and Se 4p hybridized orbitals. For light incident along the [100], [010], and [001] directions, the real and imaginary parts of the dielectric function exhibit clearly anisotropic characteristics. The absorption coefficient is greater than 105 cm−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fang, Y., Yu, X.Y., Lou, X.W.D.: Formation of polypyrrole-coated Sb2Se3 microclips with enhanced sodium-storage properties. Angew. Chem. Int. Ed. 57(31), 9859–9863 (2018)

    Article  Google Scholar 

  2. Mavlonov, A., Razykov, T., Raziq, F., Gan, J., Chantana, J., Kawano, Y., Nishimura, T., Wei, H., Zakutayev, A., Minemoto, T., Zu, X., Li, S., Qiao, L.: A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells. Sol. Energy 201, 227–246 (2020)

    Article  Google Scholar 

  3. Wenzel, F.: The crystal structure of antimony selenide, Sb2Se3. Z. Kristallogr. 171(1–4), 261–268 (2015)

    Google Scholar 

  4. Qiu, W., Zhang, C., Cheng, S., Zheng, Q., Yu, X., Jia, H., Wu, B.: The crystal structure, electronic structure and photoelectric properties of a novel solar cells absorber material Sb2Se3−S. J. Solid State Chem. 271, 339–345 (2019)

    Article  Google Scholar 

  5. Wen, X., He, Y., Chao, C., Liu, X., Tang, J.: Magnetron sputtered ZnO buffer layer for Sb2Se3 thin film solar cells. Sol. Energy Mater. 172, 74–81 (2017)

    Article  Google Scholar 

  6. Chao, C., Bobela, D.C., Ye, Y., Shuaicheng, L.U., Kai, Z., Cong, G.E., Bo, Y., Liang, G., Yang, Z., Beard, M.C.: Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics. Front. Optoelectron. 10(1), 18–30 (2017)

    Article  Google Scholar 

  7. Li, Q., Du, P., Yuan, Y., Yao, W., Ma, Z., Guo, B., Lyu, Y., Wang, P., Wang, H., Nie, A., Shahbazian-Yassar, R., Lu, J.: Real-time TEM study of nanopore evolution in battery materials and their suppression for enhanced cycling performance. Nano Lett. 19(5), 3074–3082 (2019)

    Article  Google Scholar 

  8. Li, Y., Sun, Y., Na, G., Saidi, W.A., Zhang, L.: Diverse electronic properties of 2D layered Se-containing materials composed of quasi-1D atomic chains. Phys. Chem. Chem. Phys. 22(4), 2122–2129 (2020)

    Article  Google Scholar 

  9. Li, Z., Liang, X., Li, G., Liu, H., Zhang, H., Guo, J., Chen, J., Shen, K., San, X., Yu, W., Schropp, R.E.I., Mai, Y.: 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells. Nat. Commun. 10(1), 125 (2019)

    Article  Google Scholar 

  10. Patrick, C.E., Giustino, F.: Structural and electronic properties of semiconductor-sensitized solar-cell interfaces. Adv. Mater. Opt. Electron. 21(24), 4663–4667 (2011)

    Google Scholar 

  11. Zhou, Y., Leng, M., Xia, Z., Zhong, J., Song, H., Liu, X., Yang, B., Zhang, J., Chen, J., Zhou, K., Han, J., Cheng, Y., Tang, J.: Solution-processed antimony selenide heterojunction solar cells. Adv. Energy Mater. 4(8), 1301846 (2014)

    Article  Google Scholar 

  12. Zhou, H., Feng, M., Song, K., Liao, B., Wang, Y., Liu, R., Gong, X., Zhang, D., Cao, L., Chen, S.: A highly [001]-textured Sb2Se3 photocathode for efficient photoelectrochemical water reduction. Nanoscale 11(47), 22871–22879 (2019)

    Article  Google Scholar 

  13. Dhar, A., Ahmad, G., Pradhan, D., Roy, J.N.: Performance analysis of c-Si heterojunction solar cell with passivated transition metal oxides carrier-selective contacts. J. Comput. Electron. 19(3), 1–9 (2020)

    Google Scholar 

  14. Filip, M.R., Patrick, C.E., Giustino, F.: GW quasiparticle band structures of stibnite, antimonselite, bismuthinite, and guanajuatite. J. Phys. Rev. B Condens. Matter Mater. Phys. 87, 205125 (2013)

    Article  Google Scholar 

  15. Patrick, C.E., Giustino, F.: Structural and electronic properties of semiconductor-sensitized solar-cell interfaces. Adv. Funct. Mater. 21(24), 4663–4667 (2011)

    Article  Google Scholar 

  16. Zhou, Y., Wang, L., Chen, S., Qin, S., Liu, X., Chen, J., Xue, D.-J., Luo, M., Cao, Y., Cheng, Y., Sargent, E.H., Tang, J.: Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nat. Photonics 9(6), 409–415 (2015)

    Article  Google Scholar 

  17. Caracas, R., Gonze, X.: First-principles study of the electronic properties of A2B3 minerals, with A = Bi, Sb and B = S. Se. Phys. Chem. Miner. 32(4), 295–300 (2005)

    Article  Google Scholar 

  18. Zhou, Y., Feng, W., Qian, X., Yu, L., Han, X., Fan, G., Chen, Y., Zhu, J.: Construction of 2D antimony(III) selenide nanosheets for highly efficient photonic cancer theranostics. ACS Appl. Mater. Interfaces 11(22), 19712–19723 (2019)

    Article  Google Scholar 

  19. Cai, X., Deng, S., Li, L., Hao, L.: A first-principles theoretical study of the electronic and optical properties of twisted bilayer GaN structures. J. Comput. Electron. 19, 910–916 (2020)

    Article  Google Scholar 

  20. Zhao, S., Zheng, G.: Investigation of electronic and optical properties of quaternary vanadate Cu2LiVO4 by density functional calculations. J. Comput. Electron. 18(1), 1–5 (2019)

    Article  Google Scholar 

  21. Liu, D., He, C.: Theoretical study of optical absorption in nonpolar AIGaN/GaN step quantum well structures. J. Comput. Electron. 18(1), 251–259 (2019)

    Article  MathSciNet  Google Scholar 

  22. Carey, J.J., Allen, J.P., Scanlon, D.O., Watson, G.W.: The electronic structure of the antimony chalcogenide series: prospects for optoelectronic applications. J. Solid State Chem. 213, 116–125 (2014)

    Article  Google Scholar 

  23. Efthimiopoulos, I., Buchan, C., Wang, Y.: Structural properties of Sb2Se3 under pressure: evidence of an electronic topological transition. Sci. Rep. 6, 24246 (2016)

    Article  Google Scholar 

  24. Rahnamaye Aliabad, H.A., Asadi Rad, F.: Structural, electronic and thermoelectric properties of bulk and monolayer of Sb2Se3 under high pressure: by GGA and mBJ approaches. Phys. B 545, 275–284 (2018)

    Article  Google Scholar 

  25. Koc, H., Mamedov, A.M., Deligoz, E., Ozisik, H.: First principles prediction of the elastic, electronic, and optical properties of Sb2S3 and Sb2Se3 compounds. Solid State Sci. 14(8), 1211–1220 (2012)

    Article  Google Scholar 

  26. Grossberg, M., Volobujeva, O., Penežko, A., Kaupmees, R., Raadik, T., Krustok, J.: Origin of photoluminescence from antimony selenide. J. Alloys Compd. 817, 152716 (2020)

    Article  Google Scholar 

  27. Chen, G., Zhou, J., Zuo, J., Yang, Q.: Organometallically anisotropic growth of ultralong Sb2Se3 nanowires with highly enhanced photothermal response. ACS Appl. Mater. Interfaces 8(4), 2819–2825 (2016)

    Article  Google Scholar 

  28. Song, H., Li, T., Zhang, J., Zhou, Y., Luo, J., Chen, C., Yang, B., Ge, C., Wu, Y., Tang, J.: Highly anisotropic Sb2Se3 nanosheets: gentle exfoliation from the bulk precursors possessing 1D crystal structure. Adv. Mater. 29(29), 1700441 (2017)

    Article  Google Scholar 

  29. Ko, T.Y., Shellaiah, M., Sun, K.W.: Thermal and thermoelectric transport in highly resistive single Sb2Se3 nanowires and nanowire bundles. Sci. Rep. 6, 35086 (2016)

    Article  Google Scholar 

  30. Guan, W., Wang, L., Lei, H., Tu, J., Jiao, S.: Sb2Se3 nanorods with N-doped reduced graphene oxide hybrids as high-capacity positive electrode materials for rechargeable aluminum batteries. Nanoscale 11(35), 16437–16444 (2019)

    Article  Google Scholar 

  31. YangFang, L., JianYou, Z., ChunHong, S., ShanShan, Y., Bing, L.: Theoretical inverstigation of the electronic structures and isotropic optical properties of low-symmetric layered ReS2. Low Temp. Phys. Lett. 41, 191–197 (2019)

    Google Scholar 

  32. Moss, T.S.: Semiconductor Opto-Electronics. Butterworths, London (1973)

    Google Scholar 

  33. Pankove, J.I.: Optical Processes in Semiconductors. Prentice-Hall, New Jersey (1971)

    Google Scholar 

  34. Liu, E., Zhu, B., Luo, J.: The Physics of Semiconductors, 7th edn. Publishing House of Electronics Industry (2008)

Download references

Acknowledgements

This work was supported by Guizhou Provincial Science and Technology Foundation through grant no. [2019] 1225, the Doctoral Research Program of Guizhou Normal University, China through grant nos. GZNUD [2018] 13, 14, and 15, and the Key Laboratory of Low Dimensional Condensed Matter Physics of Higher Educational Institution of Guizhou Province through grant no. [2016] 002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoshu Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, X., Liao, Y., Xie, J. et al. Theoretical investigation of the electronic structure and anisotropic optical properties of quasi-1D Sb2Se3 photovoltaic absorber materials. J Comput Electron 20, 317–323 (2021). https://doi.org/10.1007/s10825-020-01595-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01595-2

Keywords

Navigation