Skip to main content

Advertisement

Log in

Evaluation of post-translational modifications in histone proteins: A review on histone modification defects in developmental and neurological disorders

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Post-translational modification (PTM) in histone proteins is a covalent modification which mainly consists of methylation, phosphorylation, acetylation, ubiquitylation, SUMOylation, glycosylation, and ADP-ribosylation. PTMs have fundamental roles in chromatin structure and function. Histone modifications have also been known as epigenetic markers. The PTMs that have taken place in histone proteins can affect gene expression by altering chromatin structure. Histone modifications act in varied biological processes such as transcriptional activation/inactivation, chromosome packaging, mitosis, meiosis, apoptosis, and DNA damage/repair. Defects in the PTMs pathway have been associated with the occurrence and progression of various human diseases, such as cancer, heart failure, autoimmune diseases, and neurodegenerative disorders such as Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease. Histone modifications are reversible and used as potential targets for cancer therapy and prevention. Recent different histone PTMs have key roles in cancer cells since it has been shown that histone PTMs markers in cancers are acetylation, methylation, phosphorylation, and ubiquitylation. In this review, we have summarized the six most studied histone modifications and have examined the role of these modifications in the development of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

ADP:

adenosine diphosphate

ADP-ribose:

adenosine diphosphate ribose

ART:

ADP-ribosyltransferases

ARTD1/ PARP1:

poly [ADP-ribose] polymerase 1

ATM/ATR:

ATM/ATR serine/threonine kinase

ATP:

adenosine triphosphate

BRCA1:

breast cancer type 1 susceptibility protein

CARM1:

coactivator-associated arginine methyltransferase 1

ChIP:

combines chromatin immunoprecipitation

ChIP-seq:

ChIP-sequencing

CRC:

colorectal cancer

DMFS:

distant metastasis-free survival

DNase I:

deoxyribonuclease I

DSBs:

DNA double-strand breaks

E1:

ubiquitin/sumo activating

E2:

ubiquitin/sumo conjugating

E3:

ubiquitin/sumo ligase

EZH2:

Zeste homolog 2

HATs:

histone acetyltransferases

HDAC:

histone deacetylase

HMTs:

histone methyltransferases

HP1:

heterochromatin protein

LSD1:

lysine-specific histone demethyla1

MAP kinase:

mitogen-activated protein kinase

MARTs:

mono-ADP-ribosyltransferases

MLL gene fusion:

MOZ/MORF (MYST family) gene fusion

NAD:

nicotinamide adenine dinucleotide

NATs:

N-terminal acetyltransferases

OS:

overall survival

PAR:

polymeric ADP-ribose

PARP:

poly-ADP ribose synthetase

PcG proteins:

polycomb group (PcG) proteins

PO4:

phosphate

PRC2:

polycomb repressive complex 2

PRMTs:

protein arginine methyltransferases

PTMs:

post-translational modifications

RING:

really interesting new gene

RNF20:

ring finger protein 20

SET domain:

Su(var)3-9, enhancer-of-Zeste and Trithorax (suppressor of variegation, Enhancer of Zeste, and Trithorax)

SUMO:

small ubiquitin related modifier

TSSs:

transcription start sites

USP22:

ubiquitin-specific peptidase 22

References

  • Aggarwal S, Banerjee SK, Talukdar NC and Yadav AK 2020 Post-translational modification crosstalk and hotspots in sirtuin interactors implicated in cardiovascular diseases. Front. Genet. 11 356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allfrey V, Faulkner R and Mirsky A 1964 Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. PNAS. 51 786–794

    CAS  PubMed  Google Scholar 

  • Allfrey VG, Pogo BGT, Littau VC, Gershey EL, and Mirsky AE 1968 Histone Acetylation in Insect Chromosomes. J. Sci. 159 314–316

    CAS  Google Scholar 

  • Alonso V and Friedman PA 2013 Minireview: ubiquitination-regulated G protein-coupled receptor signaling and trafficking. J. Mol. Endocrinol. 27 558–572

    CAS  Google Scholar 

  • An W 2007 Histone acetylation and methylation. Chromatin and Disease, Springer. 355–374.

    Google Scholar 

  • Arnaudo AM and Garcia BA 2013 Proteomic characterization of novel histone post-translational modifications. Epigenetics Chromatin. 6 24

    CAS  PubMed  PubMed Central  Google Scholar 

  • Audia JE and Campbell RM 2016 Histone modifications and cancer. Cold Spring Harb. Perspect. Biol. 8 a019521

    PubMed  PubMed Central  Google Scholar 

  • Baarends WM, Wassenaar E, Hoogerbrugge JW, Schoenmakers S, Sun Z-W and Grootegoed JA 2007 Increased phosphorylation and dimethylation of XY body histones in the Hr6b-knockout mouse is associated with derepression of the X chromosome. J. Cell Sci. 120 1841–1851

    CAS  PubMed  Google Scholar 

  • Banerjee T and Chakravarti D 2011 A peek into the complex realm of histone phosphorylation. MCB. 31 4858–4873

    CAS  PubMed  Google Scholar 

  • Bannister AJ and Kouzarides T 2005 Reversing histone methylation. Nature. 436 1103

    CAS  PubMed  Google Scholar 

  • Bannister AJ and Kouzarides T 2011 Regulation of chromatin by histone modifications. Cell Res. 21 381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barber CM, Turner FB, Wang Y, Hagstrom K, Taverna SD, Mollah S, Ueberheide B, Meyer BJ, Hunt DF and Cheung P 2004 The enhancement of histone H4 and H2A serine 1 phosphorylation during mitosis and S-phase is evolutionarily conserved. Chromosoma. 112 360–371

    CAS  PubMed  Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I and ZhaoK 2007 High-resolution profiling of histone methylations in the human genome. Cell J. 129 823–837

    CAS  Google Scholar 

  • Bauer UM, Daujat S, Nielsen SJ, Nightingale K and Kouzarides T 2002 Methylation at arginine 17 of histone H3 is linked to gene activation. EMBO Rep. 3 39–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bedford MT and Clarke SG 2009 Protein arginine methylation in mammals: who, what, and why. Mol. Cell. 33 1–13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berdasco M, Ropero S, Setien F, Fraga MF, Lapunzina P, Losson R, Alaminos M, Cheung NK, Rahman N and Esteller M 2009 Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 in human neuroblastoma and glioma. PNAS. 106 21830–21835

    CAS  PubMed  Google Scholar 

  • Bhogaraju S and Dikic I 2016 Cell biology: Ubiquitination without E1 and E2 enzymes. Nature. 533 43–44

    CAS  PubMed  Google Scholar 

  • Boulikas T 1989 DNA strand breaks alter histone ADP-ribosylation. PNAS. 86 3499–3503

    CAS  PubMed  Google Scholar 

  • Bowman GD and Poirier MG 2014 Post-translational modifications of histones that influence nucleosome dynamics. Chem. Rev. 115 2274–2295

    PubMed  PubMed Central  Google Scholar 

  • Bulger M 2005 Hyperacetylated chromatin domains: lessons from heterochromatin. Int. J. Biol. Chem. 280 21689–21692

    CAS  Google Scholar 

  • Burnett G and Kennedy EP 1954 The enzymatic phosphorylation of proteins. Int. J. Biol. Chem. 211 969–980

    CAS  Google Scholar 

  • Burzio L, Riquelme P and Koide S 1979 ADP ribosylation of rat liver nucleosomal core histones. Int. J. Biol. Chem. 254 3029–3037

    CAS  Google Scholar 

  • Cai L, Ma X, Huang Y, Zou Y and Chen X 2014 Aberrant histone methylation and the effect of Suv39H1 siRNA on gastric carcinoma. Oncol. Rep. 31 2593–2600

    CAS  PubMed  Google Scholar 

  • Cao J and Yan Q 2012 Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer. FRONT ONCOL. 2 26

    PubMed  PubMed Central  Google Scholar 

  • Cedar H and Bergman Y 2009 Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10 295

    CAS  PubMed  Google Scholar 

  • Chen D, Ma H, Hong H, Koh SS, Huang SM, Schurter BT, Aswad DW and Stallcup MR 1999 Regulation of transcription by a protein methyltransferase. J. Sci. 284 2174–2177

    CAS  Google Scholar 

  • Chen R, Kang R, Fan X and Tang D 2014 Release and activity of histone in diseases. Cell Death Dis. 5 e1370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung WL, Ajiro K, Samejima K, Kloc M, Cheung P, Mizzen CA, Beeser A, Etkin LD, Chernoff J and Earnshaw WC 2003 Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell J. 113 507–517

    CAS  Google Scholar 

  • Choudhury JR 2016 In silico prediction of phosphorylation sites in cu/zn superoxide dismutase of different animals. https://krishikosh.egranth.ac.in/handle/1/96988

  • Cobos SN, Bennett SA and Torrente MP 2019 The impact of histone post-translational modifications in neurodegenerative diseases. Biochim Biophys Acta Mol Basis Dis. 1865 1982–1991

    CAS  PubMed  Google Scholar 

  • Cohen AS, Yap DB, Lewis MS, Chijiwa C, Ramos‐Arroyo MA, Tkachenko N, Milano V, Fradin M, McKinnon ML and Townsend KN 2016 Weaver syndrome‐associated EZH2 protein variants show impaired histone methyltransferase function in vitro. Hum. Mutat. 37 301–307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coneys R and Wood IC 2020 Alzheimer’s disease: the potential of epigenetic treatments and current clinical candidates. Neurodegener. Dis. Manag. 10 543–558

    PubMed  Google Scholar 

  • Covington III HE, Maze I, Sun H, Bomze HM, DeMaio KD, Wu EY, Dietz DM, Lobo MK, Ghose S and Mouzon E 2011 A role for repressive histone methylation in cocaine-induced vulnerability to stress. Neuron. 71 656–670.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crane-Robinson C, Hebbes TR, Clayton AL and Thorne AW 1997 Chromosomal mapping of core histone acetylation by immunoselection. Methods. 12 48–56

    CAS  PubMed  Google Scholar 

  • Cross NC 2012 Histone modification defects in developmental disorders and cancer. Oncotarget. 3 3

    PubMed  PubMed Central  Google Scholar 

  • Lorenzo A Di and Bedford MT 2011 Histone arginine methylation. FEBS Lett. 585 2024–2031

    Google Scholar 

  • Dieker J and Muller S 2010 Epigenetic histone code and autoimmunity. Clin Rev Allergy Immunol. 39 78–84

    CAS  PubMed  Google Scholar 

  • Doñas C, Loyola A and Rosemblatt M 2019 Exploring Epigenetic Drugs in the Regulation of Inflammatory Autoimmune Diseases. Translational Studies on Inflammation, IntechOpen.

  • Droescher M, Chaugule VK and Pichler A 2013 SUMO rules: regulatory concepts and their implication in neurologic functions. Neuromolecular Med. 15 639–660

    CAS  PubMed  Google Scholar 

  • Duan G and Walther D 2015 The roles of post-translational modifications in the context of protein interaction networks. PLoS Comput. Biol. 11 e1004049

    PubMed  PubMed Central  Google Scholar 

  • Eberharter A and Becker PB 2002 Histone acetylation: a switch between repressive and permissive chromatin: Second in review series on chromatin dynamics. EMBO Rep. 3 224–229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Egger G, Liang G, Aparicio A and Jones PA 2004 Epigenetics in human disease and prospects for epigenetic therapy. Nature. 429 457

    CAS  PubMed  Google Scholar 

  • Ellinger J, Kahl P, Gathen J von der, Rogenhofer S, Heukamp LC, Gütgemann I, Walter B, Hofstädter F, Büttner R and Müller SC 2010 Global levels of histone modifications predict prostate cancer recurrence. Prostate. 70 61–69

    CAS  PubMed  Google Scholar 

  • Ezhkova E, Lien WH, Stokes N, Pasolli HA, Silva JM and Fuchs E 2011 EZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair. Genes Dev. 25 485–498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan J, Krautkramer KA, Feldman JL and Denu JM 2015 Metabolic regulation of histone post-translational modifications. ACS Chem. Biol. 10 95–108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feijs KL, Verheugd P and Lüscher B 2013 Expanding functions of intracellular resident mono‐ADP‐ribosylation in cell physiology. FEBS J. 280 3519–3529

    CAS  PubMed  Google Scholar 

  • Feligioni M and Nisticò R 2013 SUMO: a (oxidative) stressed protein. Neuromolecular Med. 15 707–719

    CAS  PubMed  Google Scholar 

  • Filosa G, Barabino SM and Bachi A 2013 Proteomics strategies to identify SUMO targets and acceptor sites: a survey of RNA-binding proteins SUMOylation. Neuromolecular Med. 15 661–676

    CAS  PubMed  Google Scholar 

  • Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S and Petrie K 2005 Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat. Genet. 37 391

    CAS  PubMed  Google Scholar 

  • Fuchs SM and Strahl BD 2011 Antibody recognition of histone post-translational modifications: emerging issues and future prospects. Epigenomics. 3 247–249

    CAS  PubMed  Google Scholar 

  • Fusauchi Y and Iwai K 1984 Tetrahymena histone H2A. Acetylation in the N-terminal sequence and phosphorylation in the C-terminal sequence. J. Biochem. 95 147–154

    CAS  PubMed  Google Scholar 

  • Gareau JR and Lima CD 2010 The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat. Rev. Mol. Cell Biol. 11 861

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gjoneska E, Pfenning AR, Mathys H, Quon G, Kundaje A, Tsai LH and Kellis M 2015 Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease. Nature. 518 365

    CAS  PubMed  PubMed Central  Google Scholar 

  • Golebiowski F and Kasprzak KS 2005 Inhibition of core histones acetylation by carcinogenic nickel (II). MOL CELL BIOCHEM. 279 133–139

    CAS  PubMed  Google Scholar 

  • Gong L, Qi R and Li D WC 2016 Sumoylation Pathway as Potential Therapeutic Targets in Cancer. Curr. Mol. Med. 16 900–905

    CAS  Google Scholar 

  • Goto H, Tomono Y, Ajiro K, Kosako H, Fujita M, Sakurai M, Okawa K, Iwamatsu A, Okigaki T and Takahashi T 1999 Identification of a novel phosphorylation site on histone H3 coupled with mitotic chromosome condensation. Int. J. Biol. Chem. 274 25543–25549

    CAS  Google Scholar 

  • Goto H, Yasui Y, Nigg EA and Inagaki M 2002 Aurora‐B phosphorylates Histone H3 at serine28 with regard to the mitotic chromosome condensation. Genes Cells. 7 11–17

    CAS  PubMed  Google Scholar 

  • Greer EL and Shi Y 2012 Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 13 343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez RM and Hnilica LS 1967 Tissue specificity of histone phosphorylation. J. Sci. 157 1324–1325

    CAS  Google Scholar 

  • Haberland M, Montgomery RL and Olson EN 2009 The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 10 32–42

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haglund K and Dikic I 2005 Ubiquitylation and cell signaling. EMBO Rep. 24 3353–3359

    CAS  Google Scholar 

  • Han Y, Tanios F, Reeps C, Zhang J, Schwamborn K, Eckstein H-H, Zernecke A and Pelisek A 2016 Histone acetylation and histone acetyltransferases show significant alterations in human abdominal aortic aneurysm. Clin. Epigenetics. 8 3

    PubMed  PubMed Central  Google Scholar 

  • Hassa PO, Haenni SS, Elser M and Hottiger MO 2006 Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going?. Microbiol. Mol. Biol. Rev. 70 789–829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan YI and Zempleni J 2008 A novel, enigmatic histone modification: biotinylation of histones by holocarboxylase synthetase. Nutr. Rev. 66 721–725

    PubMed  Google Scholar 

  • Hernandez SJ, Dolivo DM and Dominko T 2017 PRMT8 demonstrates variant-specific expression in cancer cells and correlates with patient survival in breast, ovarian and gastric cancer. Oncol. Lett. 13 1983–1989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hodawadekar SC and Marmorstein R 2007 Chemistry of acetyl transfer by histone modifying enzymes: structure, mechanism and implications for effector design. Oncogene. 26 5528

    CAS  PubMed  Google Scholar 

  • Howe CG and Gamble MV 2016 Influence of arsenic on global levels of histone posttranslational modifications: a review of the literature and challenges in the field. Curr. Environ. Health Rep. 3 225–237

    PubMed  PubMed Central  Google Scholar 

  • Huang C, Xu M and Zhu B 2013 Epigenetic inheritance mediated by histone lysine methylation: maintaining transcriptional states without the precise restoration of marks? Phil. Trans. R. Soc. B. 368 20110332

    PubMed  Google Scholar 

  • Huang HS, Matevossian A, Whittle C, Kim SY, Schumacher A, Baker SP and Akbarian S 2007 Prefrontal dysfunction in schizophrenia involves mixed-lineage leukemia 1-regulated histone methylation at GABAergic gene promoters. J. Neurosci. 27 11254–11262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang R, Li X, Yu Y, Ma L, Liu S, Zong X and Zheng Q 2017 SETD7 is a prognosis predicting factor of breast cancer and regulates redox homeostasis. Oncotarget. 8 94080

    PubMed  PubMed Central  Google Scholar 

  • Jaenisch R and Bird A 2003 Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33 245

    CAS  PubMed  Google Scholar 

  • Jenuwein T and Allis CD 2001 Translating the histone code. J. Sci. 293 1074–1080

    CAS  Google Scholar 

  • Jones PA and Baylin SB 2007 The epigenomics of cancer. Cell J. 128 683–692

    CAS  Google Scholar 

  • Kaimori JY, Maehara K, Hayashi-Takanaka Y, Harada A, Fukuda M, Yamamoto S, Ichimaru N, Umehara T, Yokoyama S and Matsuda R 2016 Histone H4 lysine 20 acetylation is associated with gene repression in human cells. Sci. Rep. 6 24318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan SA, Reddy D and Gupta S 2015 Global histone post-translational modifications and cancer: Biomarkers for diagnosis, prognosis and treatment?. World J. Biol. Chem. 6 333

    PubMed  PubMed Central  Google Scholar 

  • Kingston RE and Narlikar GJ 1999 ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev. 13 2339–2352

    CAS  PubMed  Google Scholar 

  • Kleefstra T, Brunner HG, Amiel J, Oudakker AR, Nillesen WM, Magee A, Geneviève D, Cormier-Daire V, Esch H Van and Fryns J-P 2006 Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome. Am. J. Hum. Genet. 79 370–377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kouzarides T 2000 Acetylation: a regulatory modification to rival phosphorylation? EMBO J. 19 1176–1179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kouzarides T 2007 Chromatin modifications and their function. Cell J. 128 693–705

    CAS  Google Scholar 

  • Kuo MH and Allis CD 1998 Roles of histone acetyltransferases and deacetylases in gene regulation. BioEssays. 20 615–626

    CAS  PubMed  Google Scholar 

  • Labrador M and Corces VG 2003 Phosphorylation of histone H3 during transcriptional activation depends on promoter structure. Genes Dev. 17 43–48

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lan F and Shi Y 2009 Epigenetic regulation: methylation of histone and non-histone proteins. Sci. China Life Sci. 52 311–322

    CAS  Google Scholar 

  • Laumonnier F, Holbert S, Ronce N, Faravelli F, Lenzner S, Schwartz C, Lespinasse J, Esch H Van, Lacombe D and Goizet C 2005 Mutations in PHF8 are associated with X linked mental retardation and cleft lip/cleft palate. J. Med. Genet. 42 780–786

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Hwang YJ, Kim KY, Kowall NW and Ryu H 2013 Epigenetic mechanisms of neurodegeneration in Huntington’s disease. Neurotherapeutics. 10 664–676

    CAS  PubMed  PubMed Central  Google Scholar 

  • LeRoy G, DiMaggio PA, Chan EY, Zee BM, Blanco MA,Bryant B, Flaniken IZ, Liu S, Kang Y and Trojer P 2013 A quantitative atlas of histone modification signatures from human cancer cells. Epigenetics Chromatin. 6 20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levene P and Alsberg C 1906 The cleavage products of vitellin. J. Biol. Chem. 2 127–133

    Google Scholar 

  • Li C, Choi HP, Wang X, Wu F, Chen X, Lü X, Jing R, Ryu H, Wang X and Azadzoi KM 2017 Post-Translational Modification of Human Histone by Wide Tolerance of Acetylation. Cell J. 6 34

    Google Scholar 

  • Li J, Hart RP, Mallimo EM, Swerdel MR, Kusnecov AW and Herrup K 2013 EZH2-mediated H3K27 trimethylation mediates neurodegeneration in ataxia-telangiectasia. Nat. Neurosci. 16 1745

    PubMed  PubMed Central  Google Scholar 

  • Lipmann FA and Levene P 1932 Serinephosphoric acid obtained on hydrolysis of vitellinic acid. J. Biol. Chem. 98 109–114

    CAS  Google Scholar 

  • Litt M, Qiu Y and Huang S 2009 Histone arginine methylations: their roles in chromatin dynamics and transcriptional regulation. Biosci. Rep. 29 131–141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CL, Tangsombatvisit S, Rosenberg JM, Mandelbaum G, Gillespie EC, Gozani OP, Alizadeh AA and Utz PJ 2012 Specific post-translational histone modifications of neutrophil extracellular traps as immunogens and potential targets of lupus autoantibodies. Arthritis Res. Ther. 14 1–14

    Google Scholar 

  • Liu D, Wang X and Chen Z 2016 Tumor necrosis factor-α, a regulator and therapeutic agent on breast cancer. Curr. Pharm. Biotechnol. 17 486–494

    CAS  PubMed  Google Scholar 

  • Lo WS, Gamache ER, Henry KW, Yang D, Pillus L and Berger SL 2005 Histone H3 phosphorylation can promote TBP recruitment through distinct promoter‐specific mechanisms. EMBO Rep. 24 997–1008

    CAS  Google Scholar 

  • Lohrum M, Stunnenberg HG and Logie C 2007 The new frontier in cancer research: deciphering cancer epigenetics. Int. J. Biochem. Cell Biol. 39 1450–1461

    CAS  PubMed  Google Scholar 

  • Lovrečić L, Maver A, Zadel M and Peterlin B 2013 The role of epigenetics in neurodegenerative diseases. Neurodegenerative Dis. 345

  • Luger K, Mäder AW, Richmond RK, Sargent DF and Richmond TJ 1997 Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature. 389 251

  • Maile T, Kwoczynski S, Katzenberger RJ, Wassarman DA and Sauer F 2004 TAF1 activates transcription by phosphorylation of serine 33 in histone H2B. J. Sci. 304 1010–1014.

    CAS  Google Scholar 

  • Maleszewska M, Mawer JS and Tessarz P 2016 Histone modifications in ageing and lifespan regulation. Curr. Mol. Biol. Rep. 2 26–35

    Google Scholar 

  • Marks PA and Breslow R 2007 Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat. Biotechnol. 25 84

    CAS  PubMed  Google Scholar 

  • Martin C and Zhang Y 2005 The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Biol. 6 838

    CAS  PubMed  Google Scholar 

  • Matic I, Schimmel J, Hendriks IA, Santen MA van, Rijke F van de, Dam H van, Gnad F, Mann M and Vertegaal AC 2010 Site-specific identification of SUMO-2 targets in cells reveals an inverted SUMOylation motif and a hydrophobic cluster SUMOylation motif. Mol. Cell. 39 641–652

    CAS  PubMed  Google Scholar 

  • Mazzone R, Zwergel C, Artico M, Taurone S, Ralli M, Greco A and Mai A 2019 The emerging role of epigenetics in human autoimmune disorders. Clin. Epigenetics. 11 1–15

    Google Scholar 

  • McManus FP, Altamirano CD and Thibault P 2016 In vitro assay to determine SUMOylation sites on protein substrates. Nat. Protoc. 11 387

    CAS  PubMed  Google Scholar 

  • Mehta S and Jeffrey K 2016 Immune System Disorders and Epigenetics. Medical Epigenetics, Elsevier. 199–219

    Google Scholar 

  • Messner S, Altmeyer M, Zhao H, Pozivil A, Roschitzki B, Gehrig P, Rutishauser D, Huang D, Caflisch A and Hottiger MO 2010 PARP1 ADP-ribosylates lysine residues of the core histone tails. Nucleic Acids Res. 38 6350–6362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Messner S and Hottiger MO 2011 Histone ADP-ribosylation in DNA repair, replication and transcription. Trends Cell Biol. 21 534–542

    CAS  PubMed  Google Scholar 

  • Micel LN, Tentler JJ, Smith PG and Eckhardt GS 2013 Role of ubiquitin ligases and the proteasome in oncogenesis: novel targets for anticancer therapies. J. Clin. Oncol. 31 1231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minguez P, Letunic I, Parca L and Bork P 2012 PTMcode: a database of known and predicted functional associations between post-translational modifications in proteins. Nucleic Acids Res. 41 D306-D311

    PubMed  PubMed Central  Google Scholar 

  • Mirabella AC, Foster BM and Bartke T 2016 Chromatin deregulation in disease. Chromosoma. 125 75–93

    CAS  PubMed  Google Scholar 

  • Moyle PM and Muir TW 2010 Method for the synthesis of mono-ADP-ribose conjugated peptides. J. Am. Chem. Soc. 132 15878–15880

    CAS  PubMed  PubMed Central  Google Scholar 

  • Müller MM and Muir TW 2014 Histones: at the crossroads of peptide and protein chemistry. Chem. Rev. 115 2296–2349

    PubMed  PubMed Central  Google Scholar 

  • Munk S, Sigurðsson JO, Xiao Z, Batth TS, Franciosa G, Stechow L Von, Lopez-Contreras AJ, Vertegaal ACO and Olsen JV 2017 Proteomics Reveals Global Regulation of Protein SUMOylation by ATM and ATR Kinases during Replication Stress. Cell Rep. 21 546–558

    CAS  PubMed  Google Scholar 

  • Murn J and Shi Y 2017 The winding path of protein methylation research: milestones and new frontiers. Nature Reviews. J. Mol. Cell. 18 517

    CAS  Google Scholar 

  • Nadal S, Raj R, Mohammed S and Davis BG 2018 Synthetic post-translational modification of histones. Curr Opin Chem Biol. 45 35–47

    CAS  PubMed  Google Scholar 

  • Nakagawa M and Kitabayashi I 2018 Oncogenic roles of enhancer of zeste homolog 1/2 in hematological malignancies. Cancer Sci. 109 2342–2348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nathan D, Ingvarsdottir K, Sterner DE, Bylebyl GR, Dokmanovic M, Dorsey JA, Whelan KA, Krsmanovic M, Lane WS and Meluh PB 2006 Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev. 20 966–976

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ng S, Yue W, Oppermann U and Klose R 2009 Dynamic protein methylation in chromatin biology. Cell. Mol. Life Sci. 66 407

    CAS  PubMed  Google Scholar 

  • Nguyen TD, Vidal-Cortes O, Gallardo O, Abian J and Carrascal M 2015 LymPHOS 2.0: an update of a phosphosite database of primary human T cells. Database. 2015

  • Nishioka K, Rice JC, Sarma K, Erdjument-Bromage H, Werner J, Wang Y, Chuikov S, Valenzuela P, Tempst P and Steward R 2002 PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol. Cell. 9 1201–1213

    CAS  PubMed  Google Scholar 

  • Nowak SJ and Corces VG 2004 Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet. 20 214–220

    CAS  PubMed  Google Scholar 

  • Oki M, Aihara H and Ito T 2007 Role of histone phosphorylation in chromatin dynamics and its implications in diseases. Chromatin and Disease, Springer. 323–340

    Google Scholar 

  • Olins DE and Olins AL 2003 Chromatin history: our view from the bridge. Nat.Rev.Mol.Cell.Biol. 4 809–814

    CAS  PubMed  Google Scholar 

  • Pawson T and Scott JD 2005 Protein phosphorylation in signaling–50 years and counting. Trends Biochem. Sci. 30 286–290

    CAS  PubMed  Google Scholar 

  • Peleg S, Feller C, Ladurner AG and Imhof A 2016 The metabolic impact on histone acetylation and transcription in ageing. Trends Biochem. Sci. 41 700–711

    CAS  PubMed  Google Scholar 

  • Peterson CL and Laniel MA 2004 Histones and histone modifications. Curr. Biol. 14 R546-R551

    CAS  PubMed  Google Scholar 

  • Polak P, Karlić R, Koren A, Thurman R, Sandstrom R, Lawrence MS, Reynolds A, Rynes E, Vlahoviček K and Stamatoyannopoulos JA 2015 Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature 518 360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Popovic D, Vucic D and Dikic I 2014 Ubiquitination in disease pathogenesis and treatment. Nat. Med. 20 1242

    CAS  PubMed  Google Scholar 

  • Preuss U, Landsberg G and Scheidtmann KH 2003 Novel mitosis‐specific phosphorylation of histone H3 at Thr11 mediated by Dlk/ZIP kinase. Nucleic Acids Res. 31 878–885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prigent C and Dimitrov S 2003 Phosphorylation of serine 10 in histone H3, what for? J. Cell Sci. 116 3677–3685

    CAS  PubMed  Google Scholar 

  • Qi HH, Sarkissian M, Hu GQ, Wang Z, Bhattacharjee A, Gordon DB, Gonzales M, Lan F, Ongusaha PP and Huarte M 2010 Histone H4K20/H3K9 demethylase PHF8 regulates zebrafish brain and craniofacial development. Nature. 466 503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Radivojac P, Vacic V, Haynes C, Cocklin RR, Mohan A, Heyen JW, Goebl MG and Iakoucheva LM 2010 Identification, analysis, and prediction of protein ubiquitination sites. PROTEINS. 78 365–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramazi S, Zahiri J, Arab S and Parandian Y 2016 Computational prediction of proteins sumoylation: a review on the methods and databases. J. Nanomed. Res. 3

  • Rea S, Eisenhaber F, O’carroll D, Strahl BD, Sun Z-W, Schmid M, Opravil S, Mechtler K, Ponting CP and Allis CD 2000 Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature. 406 593

    CAS  PubMed  Google Scholar 

  • Robertson KD 2005 DNA methylation and human disease. Nat. Rev. Genet. 6 597

    CAS  PubMed  Google Scholar 

  • Robzyk K, Recht J and Osley MA 2000 Rad6-dependent ubiquitination of histone H2B in yeast. J. Sci. 287 501–504

    CAS  Google Scholar 

  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS and Bonner WM 1998 DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. Int. J. Biol. Chem. 273 5858–5868

    CAS  Google Scholar 

  • Romanoski CE, Glass CK, Stunnenberg HG, Wilson L and Almouzni G 2015 Epigenomics: Roadmap for regulation. Nature. 518 314

    CAS  PubMed  Google Scholar 

  • Rossetto D, Avvakumov N and Côté J 2012 Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics. 7 1098–1108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rotili D and Mai A 2011 Targeting histone demethylases: a new avenue for the fight against cancer. Genes Cancer. 2 663–679

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rowe EM, Xing V and Biggar KK 2019 Lysine methylation: Implications in neurodegenerative disease. Brain Res. J. 1707 164–171

    CAS  Google Scholar 

  • Sabari BR, Zhang D, Allis CD and Zhao Y 2017 Metabolic regulation of gene expression through histone acylations. Nat. Rev. Mol. Cell Biol. 18 90

    CAS  PubMed  Google Scholar 

  • Sadakierska-Chudy A and Filip M 2015 A comprehensive view of the epigenetic landscape. Part II: Histone post-translational modification, nucleosome level, and chromatin regulation by ncRNAs. Neurotox. Res. 27 172–197

    CAS  PubMed  Google Scholar 

  • Sadri-Vakili G and Cha JHJ 2006 Mechanisms of disease: Histone modifications in Huntington’s disease. Nat. Clin. Pract. Neurol. 2 330–338

    CAS  PubMed  Google Scholar 

  • Sandi C, Pinto RM, Al-Mahdawi S, Ezzatizadeh V, Barnes G, Jones S, Rusche JR, Gottesfeld JM and Pook MA 2011 Prolonged treatment with pimelic o-aminobenzamide HDAC inhibitors ameliorates the disease phenotype of a Friedreich ataxia mouse model. Neurobiol. Dis. 42 496–505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santos-Rebouças CB, Fintelman-Rodrigues N, Jensen LR, Kuss AW, Ribeiro MG, Campos Jr M, Santos JM and Pimentel MM 2011 A novel nonsense mutation in KDM5C/JARID1C gene causing intellectual disability, short stature and speech delay. Neurosci. Lett. 498 67–71

    PubMed  Google Scholar 

  • Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NT, Schreiber SL, Mellor J and Kouzarides T 2002 Active genes are tri-methylated at K4 of histone H3. Nature. 419 407

    CAS  PubMed  Google Scholar 

  • Sawan C and Herceg Z 2010 Histone modifications and cancer. Adv. Genet. 70 57–85

    CAS  PubMed  Google Scholar 

  • Schiza V, Molina-Serrano D, Kyriakou D, Hadjiantoniou A and Kirmizis A 2013 N-alpha-terminal acetylation of histone H4 regulates arginine methylation and ribosomal DNA silencing. PLoS Genet. 9 e1003805

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider R, Bannister AJ and Kouzarides T 2002 Unsafe SETs: histone lysine methyltransferases and cancer. Trends Biochem. Sci. 27 396–402

    CAS  PubMed  Google Scholar 

  • Seto E and Yoshida M 2014 Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 6 a018713

    PubMed  PubMed Central  Google Scholar 

  • Shao P, Liu Q, Maina PK, Cui J, Bair TB, Li T, Umesalma S, Zhang W and Qi HH 2016 Histone demethylase PHF8 promotes epithelial to mesenchymal transition and breast tumorigenesis. Nucleic Acids Res. 45 1687–1702

    PubMed Central  Google Scholar 

  • Shi SP, Qiu JD, Sun XY, Suo SB, Huang SY and Liang RP 2012 PLMLA: prediction of lysine methylation and lysine acetylation by combining multiple features. Mol. Biosyst. 8 1520–1527

    CAS  PubMed  Google Scholar 

  • Shiio Y and Eisenman RN 2003 Histone sumoylation is associated with transcriptional repression. PNAS. 100 13225–13230

    CAS  PubMed  Google Scholar 

  • Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR and Peterson CL 2006 Histone H4-K16 acetylation controls chromatin structure and protein interactions. J. Sci. 311 844–847

    CAS  Google Scholar 

  • Shortreed MR, Wenger CD, Frey BL, Sheynkman GM, Scalf M, Keller MP, Attie AD and Smith LM 2015 Global identification of protein post-translational modifications in a single-pass database search. J. Proteome Res. 14 4714–4720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simon M, North JA, Shimko JC, Forties RA, Ferdinand MB, Manohar M, Zhang M, Fishel R, Ottesen JJ and Poirier MG 2011 Histone fold modifications control nucleosome unwrapping and disassembly. PNAS. 108 12711–12716

    CAS  PubMed  Google Scholar 

  • Singh V, Miranda TB, Jiang W, Frankel A, Roemer ME, Robb VA, Gutmann DH, Herschman HR, Clarke S and Newsham IF 2004 DAL-1/4.1 B tumor suppressor interacts with protein arginine N-methyltransferase 3 (PRMT3) and inhibits its ability to methylate substrates in vitro and in vivo. Oncogene. 23 7761

  • Song Y, Zhang J, Tian T, Fu X, Wang W, Li S, Shi T, Suo A, Ruan Z and Guo H 2016 SET7/9 inhibits oncogenic activities through regulation of Gli-1 expression in breast cancer. Tumor Biol. 37 9311–9322

    CAS  Google Scholar 

  • Starheim KK, Gevaert K and Arnesen T 2012 Protein N-terminal acetyltransferases: when the start matters. Trends Biochem. Sci. 37 152–161

    CAS  PubMed  Google Scholar 

  • Starkova TY, Polyanichko A, Artamonova T, Khodorkovskii M, Kostyleva E, Chikhirzhina E and Tomilin A 2017 Post-translational modifications of linker histone H1 variants in mammals. Phys. Biol. 14 016005

    PubMed  Google Scholar 

  • Strahl BD, Ohba R, Cook RG and Allis CD 1999 Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. PNAS. 96 14967–14972

    CAS  PubMed  Google Scholar 

  • Struhl K 1998 Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12 599–606

    CAS  PubMed  Google Scholar 

  • Stützer A, Liokatis S, Kiesel A, Schwarzer D, Sprangers R, Söding J Selenko P and Fischle W 2016 Modulations of DNA contacts by linker histones and post-translational modifications determine the mobility and modifiability of nucleosomal H3 tails. Mol. Cell. 61 247–259

    PubMed  Google Scholar 

  • Sueoka T, Hayashi G and Okamoto A 2017 Regulation of the Stability of the Histone H2A–H2B Dimer by H2A Tyr57 Phosphorylation. Biochem. J. 56 4767–4772

    CAS  Google Scholar 

  • Suka N, Suka Y, Carmen AA, Wu J and Grunstein M 2001 Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin. Mol. Cell. 8 473–479

    CAS  PubMed  Google Scholar 

  • Talasz H, Helliger W, Puschendorf B and Lindner H 1996 In vivo phosphorylation of histone H1 variants during the cell cycle. Biochem. J. 35 1761–1767

    CAS  Google Scholar 

  • Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, Buchou T, Cheng Z, Rousseaux S and Rajagopal N 2011 Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell J. 146 1016–1028

    CAS  Google Scholar 

  • Tessarz P and Kouzarides T 2014 Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol. 15 703

    CAS  PubMed  Google Scholar 

  • Van Den Broeck A, Brambilla E, Moro-Sibilot D, Lantuejoul S, Brambilla C, Eymin B, Khochbin S and Gazzeri S 2008 Loss of histone h4k20 trimethylation occurs in preneoplasia and influences prognosis of non–small cell lung cancer. Clin. Cancer Res. 14 7237–7245

    Google Scholar 

  • Van der Heden van Noort GJ, van der Horst MG, Overkleeft HS, van der Marel GA and Filippov DV 2010 Synthesis of mono-ADP-ribosylated oligopeptides using ribosylated amino acid building blocks. J. Am. Chem. Soc. 132 5236–5240

    Google Scholar 

  • Varshavsky A 2017 The ubiquitin system, autophagy, and regulated protein degradation. Annu. Rev. Biochem. 86 123–128

    CAS  PubMed  Google Scholar 

  • Vendone L, Caserta M and Mauro EDi 2005 Role of histone acetylation in the control of gene expression. Biochem.Cell.Biol. 83 344–353

    Google Scholar 

  • Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M and Choudhary C 2011 A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol. Cell. Proteom. 10

    Google Scholar 

  • Wang H, Huang ZQ, Xia L, Feng Q, Erdjument-Bromage H, Strahl BD, Briggs SD, Allis CD, Wong J and Tempst P 2001 Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. J. Sci. 293 853–857

    CAS  Google Scholar 

  • Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS and Zhang Y 2004 Role of histone H2A ubiquitination in Polycomb silencing. Nature 431 873

    CAS  PubMed  Google Scholar 

  • Wang M, Jiang Y and Xu X 2015a A novel method for predicting post-translational modifications on serine and threonine sites by using site-modification network profiles. Mol. Biosyst. 11 3092–3100

    CAS  PubMed  Google Scholar 

  • Wang Q, Liu Y and Zhou J 2015b Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl. Neurodegener. 4 19

    PubMed  PubMed Central  Google Scholar 

  • Wen K, Miliç J, El-Khodor B, Dhana K, Nano J, Pulido T, Kraja B, Zaciragic A, Bramer WM and Troup J 2016 The role of DNA methylation and histone modifications in neurodegenerative diseases: a systematic review. PLoS One. 11 e0167201

    PubMed  PubMed Central  Google Scholar 

  • Wesche J, Kühn S, Kessler BM, Salton M and Wolf A 2017 Protein arginine methylation: A prominent modification and its demethylation. Cell. Mol. Life Sci. 74 3305–3315

    CAS  PubMed  Google Scholar 

  • Wood A and Shilatifard A 2004 Posttranslational modifications of histones by methylation. Adv. Protein Chem. 67 201–222.

    CAS  PubMed  Google Scholar 

  • Wood C, Snijders A, Williamson J, Reynolds C, Baldwin J and Dickman M 2009 Post‐translational modifications of the linker histone variants and their association with cell mechanisms. FEBS J. 276 3685–3697

    CAS  PubMed  Google Scholar 

  • Wysocka J, Allis C and Coonrod S 2006 Histone arginine methylation and its dynamic regulation. Front. Biosci. 11 344–355

    CAS  PubMed  Google Scholar 

  • Xhemalce B, Dawson M and Bannister A 2011 Histone Modifications. Encyclopedia of Molecular Cell Biology and Molecular Medicine.

  • Xie B, Invernizzi CF, Richard S and Wainberg MA 2007 Arginine methylation of the human immunodeficiency virus type 1 Tat protein by PRMT6 negatively affects Tat Interactions with both cyclin T1 and the Tat transactivation region. J. Virol. 81 4226–4234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu F, Zhang K and Grunstein M 2005 Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell J. 121 375–385

    CAS  Google Scholar 

  • Yang H, Biermann MH, Brauner JM, Liu Y, Zhao Y and Herrmann M 2016 New insights into neutrophil extracellular traps: mechanisms of formation and role in inflammation. Front Immunol. 7 302

    PubMed  PubMed Central  Google Scholar 

  • Yang X and Seto E 2007 HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene. 26 5310

    CAS  PubMed  Google Scholar 

  • Yang XJ 2004 Lysine acetylation and the bromodomain: a new partnership for signaling. Bioessays. 26 1076–1087

    CAS  PubMed  Google Scholar 

  • Yang Y, He Y, Wang X, He G, Zhang P, Zhu H, Xu N and Liang S 2017 Protein SUMOylation modification and its associations with disease. Open Biol. 7 170167

    PubMed  PubMed Central  Google Scholar 

  • Yokoyama Y, Hieda M, Nishioka Y, Matsumoto A, Higashi S, Kimura H, Yamamoto H, Mori M, Matsuura S and Matsuura N 2013 Cancer‐associated upregulation of histone H3 lysine 9 trimethylation promotes cell motility in vitro and drives tumor formation in vivo. Cancer Sci. 104 889–895

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zentner GE and Henikoff S 2013 Regulation of nucleosome dynamics by histone modifications. Nat. Struct. Mol. Biol. 20 259

    CAS  PubMed  Google Scholar 

  • Zhang K and Dent SY 2005 Histone modifying enzymes and cancer: going beyond histones. J. Cell. Biochem. 96 1137–1148

    CAS  PubMed  Google Scholar 

  • Zhang K, Tang H, Huang L, Blankenship JW, Jones PR, Xiang F, Yau PM and Burlingame AL 2002a Identification of Acetylation and Methylation Sites of Histone H3 from Chicken Erythrocytes by High-Accuracy Matrix-Assisted Laser Desorption Ionization–Time-of-Flight, Matrix-Assisted Laser Desorption Ionization–Postsource Decay, and Nanoelectrospray Ionization Tandem Mass Spectrometry. Anal. Biochem. 306 259–269

    CAS  PubMed  Google Scholar 

  • Zhang K, Williams KE, Huang L, Yau P, Siino JS, Bradbury EM, Jones PR, Minch MJ and Burlingame AL 2002b Histone Acetylation and Deacetylation Identification of Acetylation and Methylation Sites of HeLa Histone H4 by Mass Spectrometry. Mol Cell Proteomics. 1 500–508

    CAS  PubMed  Google Scholar 

  • Zhang T, Cooper S and Brockdorff N 2015 The interplay of histone modifications–writers that read. EMBO Rep. 16 1467–1481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhiteneva A, Bonfiglio JJ, Makarov A, Colby T, Vagnarelli P, Schirmer EC, Matic I and Earnshaw WC 2017 Mitotic post-translational modifications of histones promote chromatin compaction in vitro. Open Biol. 7 170076

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Allahverdi.

Additional information

Corresponding editor: BJ Rao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramazi, S., Allahverdi, A. & Zahiri, J. Evaluation of post-translational modifications in histone proteins: A review on histone modification defects in developmental and neurological disorders. J Biosci 45, 135 (2020). https://doi.org/10.1007/s12038-020-00099-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-020-00099-2

Keywords

Navigation