Skip to main content
Log in

Properties of Selenium Colloidal Solution Obtained via Laser Ablation and a Subsequent Method for Producing Highly Dispersed CuInSe2

  • Recent Advances in Functional Materials and 2D/3D Processing for Sensors and Electronic Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Various methods of synthesis of CuInSe2 remain relevant because it is one of the most effective materials for solar energy. An effective method for the preparation of the CuInSe2 nanodispersed selenium precursor for microwave synthesis is considered. Colloidal selenium solutions were obtained using laser ablation in various liquid media: water, ethanol, triethylene glycol, polyethylene glycol–400 (PEG-400), and a 1% solution of PEG-1500 in PEG-400. The optical properties of the obtained colloidal selenium solutions were studied. Electron microscopy of selenium particles was conducted. Trends of ablation rate change and physicochemical properties of dispersed selenium particles in the variety of liquid media listed above are discussed. The possibility of synthesizing CuInSe2 using the obtained precursor was verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.D. Compaan, JOM 59, 31 (2007).

    Google Scholar 

  2. Y. Qi, Q. Hao, G. Ren, C. Liu, and H. Liu, Ferroelectrics 521, 132 (2017).

    Google Scholar 

  3. E. Dutková, M.J. Sayagués, J. Kováč, P. Baláž, and J. Ficeriová, Mater. Lett. 173, 182 (2016).

    Google Scholar 

  4. X. Huang, X.L. Chen, Z.W. Zheng, H.M. Ji, and Y.L. Ma, Chalcogenide Lett. 16(11), 545 (2019).

  5. K. Manallah, Y. Haddad, F.Z. Satour, A. Zouaoui, and A.J. Zegadi, Electron. Mater. 49, 3956–3963 (2020).

  6. P.U. Londhe, A.B. Rohom, M.G. Lakhe, G.R. Bhand, and N.B. Chaure, Semicond. Sci. Technol. 31, 125009 (2016).

    Google Scholar 

  7. A.I. Abdel-Salam, M.M. Abdelaziz, A.N. Emam, A.S. Mansour, A.A.F. Zikry, M.B. Mohame, and Y.H. Elbashar, Rev. Mex. Fis. 66, 14 (2020).

    Google Scholar 

  8. P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, and M. Powalla, Physica Status Solidi Rapid Res. Lett. 10, 1 (2016).

    Google Scholar 

  9. Y.-C. Chen, Y.-P. Lin, T.-E. Hsieh, and M.-W. Huang, J. Alloys Compd. 791, 1 (2019).

    Google Scholar 

  10. S. Sagadevan, J. Podder, and I. Das, Springer Proc. Phys. 189, 89 (2017).

    Google Scholar 

  11. D. Abou-Ras, J. Kavalakkatt, and M. Nichterwitz, JOM 65, 1222 (2013).

    Google Scholar 

  12. Y. Luo, Colloid J. 71, 375 (2009).

    Google Scholar 

  13. D.V. Lide, Handbook of Chemistry and Physics, 83rd ed. (Cleveland: CRC Press, 2002).

    Google Scholar 

  14. O. Overschelde, G. Guisbiers, and R. Snyders, APL Mater. 1, 042114 (2013).

    Google Scholar 

  15. J.E. House and A. Kathleen, House, Descriptive Inorganic Chemistry, 3rd edn, Academic Press by Elsevier publisher location - United States, 245 (2016).

  16. A. Dahshanab, H.H. Hegazycd, K.A. Alyde, and P. Sharmaf, Physica B 526, 117 (2017).

    Google Scholar 

  17. H. Grisaru, O. Palchik, and A. Gedanken, Inorg. Chem. 42, 7148 (2003).

    Google Scholar 

  18. K. Bindu, C.S. Kartha, and K.P. Vijayakumar, Sol. Energy Mater. Sol. Cells 79, 67 (2003).

    Google Scholar 

  19. Y. Zhang, Z. Zhang, Y. Liu, Y. Liu, H. Gao, and Y. Mao, Org. Electron. 67, 168 (2019).

    Google Scholar 

  20. M. Sabet, M. Salavati-Niasari, D. Ghanbari, O. Amiri, N. Mir, and M. Dadkhah, Mater. Sci. Semicond. Process. 25, 98 (2014).

    Google Scholar 

  21. S.M. Chauhan, S.H. Chaki, M.P. Deshpande, J.P. Tailor, A.J. Khimani, and A.V. Mangrola, Nano-Struct. Nano-Objects 16, 200 (2018).

    Google Scholar 

  22. F.M. Fordyce, Essentials of Medical Geology, Vol. 375 (Dordrecht: Springer, 2013).

    Google Scholar 

  23. A.S. Grevtsev, I.Y. Goncharenko, and G.M. Muradova, Russ. J. Appl. Chem. 87, 671 (2014).

    Google Scholar 

  24. A.S. Grevtsev, O.V. Levin, and A.S. Tverjanovich, Funct. Mater. Lett. 10, 1750050 (2017).

    Google Scholar 

  25. W. Wang, Z. Jin, H. Liu, and H. Du, Mater. Lett. 65, 2895 (2011).

    Google Scholar 

  26. M. Schuster, M. Distaso, S.A. Möckel, U. Künecke, W. Peukert, and P.J. Wellmann, Energy Procedia 84, 62 (2015).

    Google Scholar 

  27. P. Endla, Rasayan J. Chem. 12, 1676 (2019).

    Google Scholar 

  28. P.G. Kuzmin, G.A. Shafeev, and V.V. Voronov, Quantum Electron. 42, 1042 (2012).

    Google Scholar 

  29. S. Chaudhary and S.K. Mehta, J. Nanosci. Nanotechnol. 14, 1658 (2014).

    Google Scholar 

  30. Z.-Y. Jiang, Z.-X. Xie, and S.-Y. Xie, Chem. Phys. Lett. 368, 425 (2003).

    Google Scholar 

  31. E.E. Kazilin, M.I. Markevich, and S.V. Konkin, Persp. Mater. 2, 60 (2008).

    Google Scholar 

  32. A.K. Bhatnagar, K.V. Reddy, and V. Srivastava, J. Phys. D Appl. Phys. 18, 149 (1985).

    Google Scholar 

  33. S.C. Singh, S.K. Mishra, and R.K. Srivastava, J. Phys. Chem. C 114, 17374 (2010).

    Google Scholar 

  34. R.A. Ganeev, A.I. Ryasnyanskiy, and U. Chakravarty, Appl. Phys. B 86, 337 (2007).

    Google Scholar 

  35. R.A. Ganeev and A.I. Ryasnyansky, Opt. Commun. 246, 163 (2005).

    Google Scholar 

  36. A.S. Kshirsagar, P.V. More, and P.K. Khanna, RSC Adv. 6, 86137 (2016).

    Google Scholar 

  37. I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, and R. Noufi, Prog. Photovolt. Res. Appl. 16, 235 (2008).

    Google Scholar 

  38. M.V. Yakusheva, A.V. Mudryi, V.F. Gremenok, V.B. Zalesskic, P.I. Romanovc, Y.V. Feofanova, R.W. Martina, and R.D. Tomlinson, J. Phys. Chem. Solids 64, 2005 (2003).

    Google Scholar 

  39. J.K. MacFarquhar, D.L. Broussard, and P. Melstrom, Arch. Internal Med. 170, 256 (2010).

    Google Scholar 

  40. A. Kamble, B. Sinha, S. Vanalakar, G. Agawane, M.G. Gang, J.Y. Kim, P. Patild, and J.H. Kim, CrystEngComm 18, 2885 (2016).

    Google Scholar 

  41. M. Yamaguchi and M. Uchiyama, Res. Exp. Med. 187, 395 (1987).

    Google Scholar 

  42. J. Li, K. Sun, L. Ni, X. Wang, D. Wang, and J. Zhang, Toxicol. Appl. Pharmacol. 258, 376 (2012).

    Google Scholar 

  43. A.M. Soydan, P. Yilmaz, and B. Tunaboylu Jr, Hindawi J. Chem. V 7, 5187960 (2018).

    Google Scholar 

  44. A.M. Hurd-Karrer, Am. J. Bot. 24, 720 (1937).

    Google Scholar 

  45. J. Shim, J.-S. Hahn, S.-H. Lee, and J. Lee, J. Nanosci. Nanotechnol. 14, 9279 (2014).

    Google Scholar 

  46. T.G. Back, Organoselenium Chemistry. A Practical Approach (Oxford: Oxford University Press, 2002).

    Google Scholar 

  47. S.J. Ahn, K. Kim, A. Cho, J. Gwak, J.H. Yun, K. Shin, S.K. Ahn, and K. Yoon, ACS Appl. Mater. Interfaces 4, 1530 (2012).

    Google Scholar 

  48. M.M. Glas, Srpska Akademija Nauka i umetnosti. Odeljenje Medicinskih Nauka, 42131 (1992).

  49. J. Liesivuori and H. Savolainen, Pharmacol. Toxicol. 69, 157 (1991).

    Google Scholar 

  50. J. Merrill and D.C. Senft, JOM 59, 26 (2007).

    Google Scholar 

Download references

Acknowledgements

The study of optical losses and absorption spectra, luminescence spectra, and luminescence excitation spectra were conducted at the SPBU resource center “Optical and Laser Materials Research.” Electron microscopy research was conducted at the Interdisciplinary Resource Center for Nanotechnologies. This work was financially supported by the Russian Foundation for Basic Research: Project No. 20-03-00185-A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kochemirovskaia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochemirovskaia, S.V., Lebedev, D.V., Fogel, A.A. et al. Properties of Selenium Colloidal Solution Obtained via Laser Ablation and a Subsequent Method for Producing Highly Dispersed CuInSe2. JOM 73, 646–654 (2021). https://doi.org/10.1007/s11837-020-04407-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04407-x

Navigation