Skip to main content
Log in

Oil characteristics and influence of heat processing on fatty acid profile of wild harvested termite (Macrotermes subhylanus) and long-horned grasshopper (Ruspolia differens)

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

The aim of this study was to assess the physico-chemical characteristics and fatty acid profile of oil from termite (Macrotermes subhylanus), green and brown long-horned grasshopper (Ruspolia differens). The insects were harvested in Siaya county of Western Kenya from the wild during swarming seasons. Physico-chemical characteristics of insects oil and the effect of two traditional heat processing methods (frying and solar drying) on the fatty acid profile were determined using standard methods. The insects oil was a clear, golden or light yellow colored liquid at room temperature, with a low solidification temperature (8–12 °C) for M. subhylanus and10–15 °C for R. differens. M. subhylanus showed an iodine value of 83.51 g iodine/100 g oil, peroxide value 0.19 mEq/Kg, saponification value 160.61 mg KOH/Kg and 38.77 mg/100 ml of total cholesterol. R. differens showed an iodine value of 86.97 g iodine/100 g oil, peroxide value 0.13–0.14 mEq/Kg, saponification value 229.67–234.40 mg KOH/Kg and 27.51–31.40 mg/100 ml of total cholesterol. Oleic acid was the major fatty acid in all the fresh insect samples (M. subylanus 52.1%, green R. differens 43.2%, brown R. differens 37.1%) while palmitic acid was the second most abundant fatty acid. Total unsaturated fatty acids were proportionately more than the total saturated fatty acids. The level of saturated fatty acids increased from fresh insect samples to heat processed samples (fried, fresh-dried and fried-dried), while the level of unsaturated fatty acids decreased with processing though insignificantly. The insects have high quality oil that maybe exploited in processing of nutritional food products and they may therefore be heat processed domestically without adversely affecting the quality of the oils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data and material used in this publication are available on request.

References

  • AOAC (2000) Official methods of analysis, 18th edn. Association of Analytical Chemists, Washington, DC

    Google Scholar 

  • AOCS (1997) Official methods and recommended practices of the American oil chemists society, physical and chemical characteristics of oils, fats, 5th edn. AOCS Press, Champaign. Lipid/Fett 99(5):97–197

  • Ayieko MAM, Ndong MFO, Tamale A, Ndong’a F, Tamale A (2010) Climate change and the abundance of edible insects in the Lake Victoria region. J Cell Anim Biol 4:112–118. https://doi.org/10.5897/JCAB

    Article  Google Scholar 

  • Ayieko MA, Obonyo GO, Odhiambo JA, Ogweno PL, Achacha J, Anyango J (2011) Constructing and using a light trap harvester: rural technology for mass collection of agoro termites (Macrotermes subhylanus). Res J Appl Sci Eng Technol 3:105–109

    Google Scholar 

  • Azlan A, Prasad KN, Khoo HE, Abdul-Aziz N, Mohamad A, Ismail A, Amom Z (2010) Comparison of fatty acids, vitamin E and physicochemical properties of Canarium odontophyllum Miq. (dabai), olive and palm oils. J Food Compos Anal 23:772–776. https://doi.org/10.1016/j.jfca.2010.03.026

    Article  CAS  Google Scholar 

  • Bailey WJ, McCrae AWR (1978) The general biology and phenology of swarming in the east african tettigoniid ruspolia differens (Serville) (Orthoptera). J Nat Hist 12:259–288. https://doi.org/10.1080/00222937800770151

    Article  Google Scholar 

  • Barreto MC (2005) Lipid extraction and cholesterol quantification: a simple protocol. J Chem Educ 82:103. https://doi.org/10.1021/ed082p103

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. https://doi.org/10.1139/o59-099

    Article  CAS  PubMed  Google Scholar 

  • Campbell M, Ortuño J, Stratakos AC, Linton M, Corcionivoschi N, Elliott T, Koidis A, Theodoridou K (2008) The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med 233:674–688. https://doi.org/10.3181/0711-MR-311

    Article  CAS  Google Scholar 

  • Ekpo KE, Onigbinde a O (2007) Characterization of lipids in winged reproductives of the termite Macrotermis bellicosus. Pak J Nutr 6:247–251. https://doi.org/10.3923/pjn.2007.247.251

    Article  Google Scholar 

  • Fombong FT, Van Der Borght M, Vanden BJ (2017) Influence of freeze-drying and oven-drying post blanching on the nutrient composition of the edible insect Ruspolia differens. Insects 8:102. https://doi.org/10.3390/insects8030102

    Article  PubMed Central  Google Scholar 

  • Kelemu S, Niassy S, Torto B, Fiaboe K, Affognon H, Tonnang H, Maniania NK, Ekesi S (2015) African edible insects for food and feed: inventory, diversity, commonalities and contribution to food security. J Insects as Food Feed 1:103–119. https://doi.org/10.3920/JIFF2014.0016

    Article  Google Scholar 

  • Kenji GM, Ayieko MA, Ndong’a MF, Tamale A, Mayende TS, Kinyuru JN (2012) Nutrient composition of Reproductives ( Alates ) of termites ( Macrotermes bellicosus and Odontermes badius ) consumed in Lake Victoria region. Ethnobot Heal 1:59–66

    Google Scholar 

  • Kinyuru JN, Ndung’u NW (2020) Promoting edible insects in Kenya: historical , present and future perspectives towards establishment of a sustainable value chain. J Insects as Food Feed 6:51–58. https://doi.org/10.3920/JIFF2019.0016

    Article  Google Scholar 

  • Kinyuru JN, Kenji GM, Njoroge SM (2010) Nutritional potential of longhorn grasshopper (Ruspolia differens) consumed in Lake Victoria region of East Africa. J Agric Sci Technol 1:32–46

    Google Scholar 

  • Kinyuru J, Konyole S, Kenji G, Onyango C, Owino V, Owuor B, Estambale B, Friis H, Roos N (2012) Identification of Traditional Foods with Public Health Potential for Complementary Feeding in Western Kenya. J Food Res 1:148–158. https://doi.org/10.5539/jfr.v1n2p148

    Article  Google Scholar 

  • Kinyuru JN, Konyole SO, Roos N, Onyango CA, Owino VO, Owuor BO, Estambale BB, Friis H, Aagaard-hansen J, Kenji GM (2013) Nutrient composition of four species of winged termites consumed in western Kenya. J Food Compos Anal 30:120–124. https://doi.org/10.1016/j.jfca.2013.02.008

    Article  CAS  Google Scholar 

  • Kinyuru JN, Nyangena D, Kamau E, Ndiritu A, Muniu J, Kipkoech C, Weru J, Ndung’u N, Mmari M, Dorothy Nyangena, Edwin Kamau, Alex Ndiritu, Joyce Muniu, Carolyne Kipkoech, Johnson Weru, Nancy Ndung’u and Mercy Mmari (2018) The role of edible insects in diets and nutrition in East Africa. In: Halloran A, Flore R, Vantomme P, Roos N (eds) Wdible insects in sustainable food systems, 1st. Springer, Cham, pp. 93–109

  • Lehtovaara VJ, Valtonen A, Sorjonen J, Hiltunen M, Rutaro K, Malinga GM, Nyeko P, Roininen H (2017) The fatty acid contents of the edible grasshopper Ruspolia differens can be manipulated using artificial diets. J Insects as Food Feed 3:253–262

    Article  Google Scholar 

  • Lehtovaara VJ, Roininen H, Valtonen A (2018) Optimal temperature for rearing the edible Ruspolia differens (Orthoptera: Tettigoniidae). J Econ Entomol 111:2652–2659. https://doi.org/10.1093/jee/toy234

    Article  CAS  PubMed  Google Scholar 

  • Malinga GM, Lehtovaara VJ, Valtonen A, Nyeko P, Roininen H (2019) Developing mass egg-laying medium for the edible Ruspolia differens (Orthoptera: Tettigonidae). J Econ Entomol 112:2157–2160. https://doi.org/10.1093/jee/toz124

    Article  PubMed  Google Scholar 

  • Matojo ND (2017) A review work on how to differentiate the longhorn grasshoppers Ruspolia differens and Ruspolia nitidula (Orthoptera: Tettigoniidae). J Appl Life Sci Int 15:1–4. https://doi.org/10.9734/JALSI/2017/37912

    Article  Google Scholar 

  • Matojo ND, Hosea KM (2013) Phylogenetic relationship of the longhorn grasshopper Ruspolia differens Serville (Orthoptera: Tettigoniidae) from Northwest Tanzania based on 18S ribosomal nuclear sequences. J Insects 2013:1–5

  • Mmari MW, Kinyuru JN, Laswai HS, Okoth JK (2017) Traditions, beliefs and indigenous technologies in connection with the edible longhorn grasshopper Ruspolia differens (Serville 1838) in Tanzania. J Ethnobiol Ethnomed 13:60. https://doi.org/10.1186/s13002-017-0191-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Nyeko P, Olubayo FM (2005) Participatory assessment of farmers’ experiences of termite problems in agroforestry in Todoro district. The University of Nairobi

  • Onyeike EN, Oguike JU (2003) Influence of heat processing methods on the nutrient composition and lipid characterization of groundnut ( Arachis hypogaea ) seed pastes. Biokemistri 15(1):34–43

  • Opoke R, Nyeko P, Malinga GM, Rutaro K, Roininen H, Valtonen A (2019) Host plants of the non-swarming edible bush cricket Ruspolia differens. Ecol Evol 9:3899–3908. https://doi.org/10.1002/ece3.5016

    Article  PubMed  PubMed Central  Google Scholar 

  • Rutaro K, Malinga GM, Lehtovaara VJ, Opoke R, Nyeko P, Roininen H, Valtonen A (2018a) Fatty acid content and composition in edible Ruspolia differens feeding on mixtures of natural food plants. BMC Res Notes 11:1–6. https://doi.org/10.1186/s13104-018-3792-9

    Article  CAS  Google Scholar 

  • Rutaro K, Malinga GM, Lehtovaara VJ, Opoke R, Valtonen A, Kwetegyeka J, Nyeko P, Roininen H (2018b) The fatty acid composition of edible grasshopper Ruspolia differens (Serville) (Orthoptera: Tettigoniidae) feeding on diversifying diets of host plants. Entomol Res 48:490–498. https://doi.org/10.1111/1748-5967.12322

    Article  Google Scholar 

  • Van Huis A, Van Itterbeeck J, Klunder H, Mertens E, Halloran A, Muir G, Vantomme P (2013) Edible insects: future prospects for food and feed security (No. 171). Food and Agriculture Organization of the United Nations. pp 1–201

  • Williams P (2007) Nutritional composition of red meat. Nutr Diet 64:S113–S119. https://doi.org/10.1111/j.1747-0080.2007.00197.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John N. Kinyuru.

Ethics declarations

Conflict of interest

There are was no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The author consents to the publication of this paper.

Code availability (software application or custom code)

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinyuru, J.N. Oil characteristics and influence of heat processing on fatty acid profile of wild harvested termite (Macrotermes subhylanus) and long-horned grasshopper (Ruspolia differens). Int J Trop Insect Sci 41, 1427–1433 (2021). https://doi.org/10.1007/s42690-020-00337-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-020-00337-y

Keywords

Navigation