Skip to main content
Log in

Effects of photoperiods on demography and population growth of Aulacophora foveicollis Lucas reared on Solena amplexicaulis plant

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Aulacophora foveicollis Lucas, commonly known as red pumpkin beetle, is an important pest of many cucurbitaceous plants in India. To develop the mass rearing facilities, this research was conducted on the effects of photoperiods on larval and adult development of A. foveicollis on roots and leaves of Solena amplexicaulis (Lam.) Gandhi, commonly known as creeping cucumber, respectively, at five different photoperiods, 8 L:16D, 10 L:14D, 12 L:12D, 14 L:10D and 16 L:8D at 30 ± 1 °C and 75 ± 5% RH under laboratory conditions. The shortest total development time (egg to adult emergence) of A. foveicollis was 41.10 days at 14 L:10D. The longevity of females was the highest at 14 L:10D (61.00 days) and the shortest at 8 L:16D (39.87 days). The fecundity was the highest at 14 L:10D (188.08) and the lowest at 8 L:16D (101.40). The net reproduction rate (R0) ranged from 5.32 to 24.45 offspring, which was higher at 12 L:12D and 14 L:10D. The intrinsic rate of increase (r) varied from 0.0251 to 0.0520 day−1, and it was higher at 12 L:12D and 14 L:10D. The finite rate of increase (λ) was also higher at 12 L:12D and 14 L:10D. Mean generation time (T) was the fastest at 14 L:10D (61.52 days) and the longest at 8 L:16D (69.33 days). Population projection revealed that total A. foveicollis population growth was the fastest at 14 L:10D. These results suggested that 14 L:10D was the most suitable for development and reproduction of A. foveicollis than other photoperiod regimes tested in this study, and this information will be helpful for running successful bioassays in integrated pest management programme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Berkvens N, Bonte J, Berkvens D, Tirry L, Clercq De P (2008) Influence of diet and photoperiod on development and reproduction of European populations of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). BioControl 53:211–221

    Google Scholar 

  • Birch LC (1948) The intrinsic rate of natural increase of an insect population. J Anim Ecol 17:15–26

    Google Scholar 

  • Caglar SS, Saglam IK, Akiner MM (2011) The influence of photoperiod on size and development of ovarioles in insecticide resistant and susceptible strains of the house fly Musca domestica L. (Diptera: Muscidae). Turk J Zool 35:325–331

    Google Scholar 

  • Carvalho AR, Bueno VHP, Pedroso EC, Kon LI, Diniz AJF, Silva RJ (2006) Influence of photoperiod on Orius thyestes herring (Hemiptera: Anthocoridae) reproduction and longevity. Neotrop Entomol 35:489–492

    PubMed  Google Scholar 

  • Chen ZZ, Liu LY, Liu SY, Cheng LY, Wang XH, YY XU (2017) Response of Chrysoperla nipponensis (Okamoto) (Neuroptera: Chrysopidae) under long and short photoperiods. J Insect Sci 17:1–9

    CAS  Google Scholar 

  • Chi H (1988) Life-table analysis incorporating both sexes and variable development rates among individuals. Environ Entomol 17:26–34

    Google Scholar 

  • Chi H (1990) Timing of control based on the stage structure of pest populations: a simulation approach. J Econ Entomol 83:1143–1150

    Google Scholar 

  • Chi H (2017a) TWOSEX-MSChart: a computer program for age stage, two-sex life table analysis. National Chung Hsing University, Taichung http://140.120.197.173/ecology/Download/Twosex-MSChart-exe-B100000.rar

    Google Scholar 

  • Chi H (2017b) TIMING-MSChart: computer program for population projection based on age-stage, two-sex life table. National Chung Hsing University, Taichung http://140.120.197.173/Ecology/Download/Timing-MSChart.rar

    Google Scholar 

  • Chi H, Su H-Y (2006) Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environ Entomol 35:10–21

    Google Scholar 

  • Chocorosqui VR, Panizzi AR (2003) Photoperiod influence on the biology and phenological characteristics of Dichelops melacanthus (Dallas, 1851) (Heteroptera: Pentatomidae). Braz J Biol 63:655–664

    CAS  PubMed  Google Scholar 

  • Crosskey RW (1973) A conspectus of the Tachinidae (Diptera) of Australia, including keys to the supraspecific taxa and taxonomic and host catalogues. Bull Brit Mus (Nat Hist) Entomol 21:1–221

    Google Scholar 

  • Das S, Koner A, Barik A (2019) Biology and life history of Lema praeusta (fab.) (Coleoptera: Chrysomelidae), a biocontrol agent of two Commelinaceae weeds, Commelina benghalensis and Murdannia nudiflora. Bull Entomol Res 109:463–471

    CAS  PubMed  Google Scholar 

  • Debnath R, Mobarak SH, Mitra P, Barik A (2020) Comparative performance and digestive physiology of Diaphania indica (Lepidoptera: Crambidae) on Trichosanthes anguina (Cucurbitaceae) cultivars. Bull Entomol Res. https://doi.org/10.1017/S0007485320000255

  • Dolezel D (2015) Photoperiodic time measurement in insects. Curr Opin Insect Sci 7:98–103

    PubMed  Google Scholar 

  • Goodman D (1982) Optimal life histories, optimal notation, and the value of reproductive value. Am Nat 119:803–823

    Google Scholar 

  • Greenberg SM, Sappington TW, Adamczyk JJ, Liu T-X, Setamou M (2008) Effects of photoperiod on boll weevil (Coleoptera: Curculionidae) development, survival and reproduction. Environ Entomol 37:1396–1402

    CAS  PubMed  Google Scholar 

  • Hasegawa Y, Takeuchi T, Hirai N (2019) Variability of photosensitive period and voltinism among populations of a butterfly, Ypthima multistriata, inhabiting similar latitudes and altitudes. Entomol Exp Appl 167:467–475

    Google Scholar 

  • Huang Y-B, Chi H (2011) The age-stage, two-sex life table with an offspring sex ratio dependent on female age. J Agric For 60:337–345

    Google Scholar 

  • Huang Y-B, Chi H (2012) Life tables of Bactrocera cucurbitae (Diptera: Tephritidae) with an invalidation of the jackknife technique. J Appl Entomol 137:327–339

    Google Scholar 

  • Kamal MM, Uddin MM, Shajahan M, Rahman MM (2013) Role of host and temperature on the feeding and oviposition behaviour of red pumpkin beetle Aulacophora foveicollis (Lucas). Progress Agric 24:53–60

    Google Scholar 

  • Karmakar A, Malik U, Barik A (2016) Effects of leaf epicuticular wax compounds from Solena amplexicaulis (lam.) Gandhi on olfactory responses of a generalist insect herbivore. Allelopathy J 37:253–272

    Google Scholar 

  • Karmakar A, Mitra P, Koner A, Das S, Barik A (2020) Fruit volatiles of creeping cucumber (Solena amplexicaulis) attract a generalist insect herbivore. J Chem Ecol 46:275–287

    CAS  PubMed  Google Scholar 

  • Karmakar A, Mitra S, Barik A (2018) Systemically released volatiles from Solena amplexicaulis plant leaves with color cues influencing attraction of a generalist insect herbivore. Int J Pest Manag 64:210–220

    CAS  Google Scholar 

  • Karthika K, Paulsamy S (2012) Antibacterial potential of traditional plant species Solena amplexicaulis (lam.) Gandhi. Against certain human pathogens. Asian J Pharm Clin Res 5:255–257

    Google Scholar 

  • Karthika K, Paulsamy S (2014) Phytochemical profiling of leaf, stem, and tuber parts of Solena amplexicaulis (lam.) Gandhi using GC-MS. Int Sch Res Notices. https://doi.org/10.1155/2014/567409

  • Karthika K, Paulsamy S, Jamuna S (2012) Evaluation of in vitro antioxidant potential of methanolic leaf and stem extracts of Solena amplexicaulis (lam.) Gandhi. J Chem Pharm Res 4:3254–3258

    CAS  Google Scholar 

  • Khan MMH (2014) Effect of different management tactics on the incidence and movement of red pumpkin beetle, Aulacophora foveicollis on the leaves of sweet gourd, Cucurbita moschata. Jahangirnagar University J Biol Sci 3:73–80

    Google Scholar 

  • Khan MMH, Alam MZ, Rahman MM (2012) Host preference of red pumpkin beetle in a choice test under net case condition. Bangladesh J Zool 39:231–234

    Google Scholar 

  • Koner A, Debnath R, Barik A (2019) Age-stage, two-sex life table and food utilization efficiencies of Galerucella placida Baly (Coleoptera: Chrysomelidae) on two Polygonaceae weeds. J Asia Pac Entomol 22:1136–1144

    Google Scholar 

  • Koštál V (2011) Insect photoperiodic calendar and circadian clock: independence, cooperation, or unity? J Insect Physiol 57:538–556

    PubMed  Google Scholar 

  • Kutcherov DA, Lopatina EB, Kipyatkov VE (2011) Photoperiod modifies thermal reaction norms for growth and development in the red poplar leaf beetle Chrysomela populi (Coleoptera: Chrysomelidae). J Insect Physiol 57:892–898

    CAS  PubMed  Google Scholar 

  • Luker LA, Hatle JD, Juliano SA (2002) Reproductive responses to photoperiod by a South Florida population of the grasshopper Romalea microptera (Orthoptera: Romaleidae). Environ Entomol 31:702–707

    Google Scholar 

  • Mitra S, Mobarak SH, Barik A (2020) Age-stage, two-sex life table of the biocontrol agent. Altica cyanea on three Ludwigia species. Biologia. https://doi.org/10.2478/s11756-020-00503-0

  • Mobarak SH, Roy N, Barik A (2020) Two-sex life table and feeding dynamics of Spilosoma obliqua Walker (Lepidoptera: Arctiidae) on three green gram cultivars. Bull Entomol Res 110:219–230

    CAS  PubMed  Google Scholar 

  • Mukherjee A, Karmakar A, Barik A (2017) Bionomics of Momordica cochinchinensis fed Aulacophora foveicollis (Coleoptera: Chrysomelidae). Proc Zool Soc 70:81–87

    Google Scholar 

  • Mukherjee A, Sarkar N, Barik A (2015) Momordica cochinchinensis (Cucurbitaceae) leaf volatiles: semiochemicals for host location by the insect pest, Aulacophora foveicollis (Coleoptera: Chrysomelidae). Chemoecology 25:93–104

    CAS  Google Scholar 

  • Nagarani G, Abirami A, Siddhuraju P (2014) Food prospects and nutraceutical attributes of Momordica species: a potential tropical bioresources - a review. Food Sci Hum Wellness 3:117–126

    Google Scholar 

  • Omkar, Pathak S (2006) Effects of different photoperiods and wavelengths of light on the life-history traits of an aphidophagous ladybird, Coelophora saucia (Mulsant). J Appl Entomol 130(1):45–50. https://doi.org/10.1111/j.1439-0418.2005.01016.x

  • Qin Q, Liu S, Li S, Zhang W, He Y (2015) Role of photoperiod in the development and reproduction of Harmonia axyridis (Coleoptera, Coccinellidae). Biocontrol Sci Techn 26:116–124

    Google Scholar 

  • Rahaman MA, Prodhan MDH (2007) Effects of net barrier and synthetic pesticides on red pumpkin beetle and yield of cucumber. Int J Sustain Crop Prod 2:30–34

    Google Scholar 

  • Raman K, Annadurai RS (1985) Host selection and food utilization of the red pumpkin beetle, Raphidopalpa foveicollis (Lucas) (Chrysomelidae: Coleoptera). Proc Indian Acad Sci (Anim Sci) 94:547–556

    Google Scholar 

  • Reznik SY, Dolgovskaya MY, Ovchinnikov AN, Belyakova NA (2015) Weak photoperiodic response facilitates the biological invasion of the harlequin ladybird Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). J Appl Entomol 139:241–249

    Google Scholar 

  • Reznik SY, Vaghina NP (2011) Photoperiodic control of development and reproduction in Harmonia axyridis (Coleoptera: Coccinellidae). Eur J Entomol 108:385–390

    Google Scholar 

  • Sarkar N, Mukherjee A, Barik A (2016) Effect of bitter gourd (Cucurbitaceae) foliar constituents on development and reproduction of Epilachna dodecastigma (Coleoptera: Coccinellidae). Int J Trop Insect Sci 36:195–203

    Google Scholar 

  • Saunders DS (2013) Insect photoperiodism: measuring the night. J Insect Physiol 59:1–10

    CAS  PubMed  Google Scholar 

  • Umble JR, Fisher JR (2002) Influence of temperature and photoperiod on preoviposition duration and oviposition of Otiorhynchus ovatus (Coleoptera: Curculionidae). Ann Entomol Soc Am 95:231–235

    Google Scholar 

  • Venkateshwarlu E, Reddy RA, Goverdhan P, Rani SK, Reddy JG (2011) In vitro and in vivo antioxidant activity of methanolic extract of Solena amplexicaulis (whole plant). Int J Pharma Bio Sci 1:522–533

    Google Scholar 

  • Waterhouse DF, Norris KR (1987) Biological control: Pacific prospects. Inkata Press, Melbourne

    Google Scholar 

  • Whittaker MS, Kirk WDJ (2004) The effect of photoperiod on walking, feeding, and oviposition in the western flower thrips. Entomol Exp Appl 111:209–214

    Google Scholar 

  • Yu LY, Chen ZZ, Zheng FQ, Shi AJ, Guo TT, Yeh BH, Chi H, Xu YY (2013) Demographic analysis, a comparison of the jackknife and bootstrap methods, and predation projection: a case study of Chrysopa pallens (Neuroptera: Chrysopidae). J Econ Entomol 106:1–9

    PubMed  Google Scholar 

  • Zerbino MS, Altier NA, Panizzi AR (2013) Effect of photoperiod and temperature on nymphal development and adult reproduction of Piezodorus guildinii (Heteroptera: Pentatomidae). Florida Entomol 96:572–582

    Google Scholar 

Download references

Acknowledgements

We thank anonymous reviewers for many helpful suggestions of earlier versions of the manuscript. The financial assistance from the Ballygunge Society for Environment and Development (BSED) to Dr. Amarnath Karmakar is gratefully acknowledged. We are thankful to DST PURSE Phase-II for providing necessary instrumental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anandamay Barik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmakar, A., Mobarak, S.H., Koner, A. et al. Effects of photoperiods on demography and population growth of Aulacophora foveicollis Lucas reared on Solena amplexicaulis plant. Int J Trop Insect Sci 41, 1407–1418 (2021). https://doi.org/10.1007/s42690-020-00335-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-020-00335-0

Keywords

Navigation