Skip to main content
Log in

A Performance Analysis of Quantum Low-Density Parity-Check Codes for Correcting Correlated Errors

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper we analyse the performance of quantum low-density parity-check (LDPC) codes over quantum memory channels for correcting correlated errors, where the quantum LDPC codes we use are the hypergraph product quantum LDPC codes. We generalize the classical Gilbert-Elliot markovian memory channel to the quantum Gilbert-Elliot channel and use it to model the memory effect in quantum memory channels. The simulation results show the memory effects in quantum GE channels has a bad effect to the performance of hypergraph product quantum LDPC codes. Then we propose a concatenation scheme by serially concatenating two hypergraph product quantum LDPC codes and it is shown that the serial concatenation scheme can improve the performance of hypergraph product quantum LDPC codes and lower down the error floor over quantum GE channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gilbert, E.N.: Capacity of a burst-noise channel. Bell System Technical Journal 39(5), 1253–1265 (1960)

    Article  MathSciNet  Google Scholar 

  2. Elliott, E.O.: Estimates of error rates for codes on burst-noise channels. The Bell System Technical Journal 42(5), 1977–1997 (1963)

    Article  Google Scholar 

  3. Ben-Aroya, A., Ta-Shma, A.: Approximate quantum error correction for correlated noise. IEEE Trans. Inform. Theory 57(6), 3982–988 (2011)

    Article  MathSciNet  Google Scholar 

  4. Novais, E., Baranger, H.U.: Decoherence by correlated noise and quantum error correction. Phys. Rev. Lett. 97(4), 040501 (2006)

    Article  ADS  Google Scholar 

  5. Clemens, J.P., Siddiqui, S., Gea-Banacloche, J.: Quantum error correction against correlated noise. Phys. Rev. A 69(6), 062313 (2004)

    Article  ADS  Google Scholar 

  6. Vatan, F., Roychowdhury, V.P., Anantram, M.P.: Spatially correlated qubit errors and burst-correcting quantum codes. IEEE Trans. Inform. Theory 45(5), 1703–1708 (1999)

    Article  MathSciNet  Google Scholar 

  7. Kawabata, S.: Quantum interleaver: quantum error correction for burst error. J. Phys. Soc. Jpn. 69(11), 3540–3543 (2000)

    Article  ADS  Google Scholar 

  8. Qian, J., Zhang, L.: Constructions of new quantum burst-correcting codes. International Journal of theoretical physics 54(3), 917–926 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  9. Fan, J., Hsieh, M.-H., Chen, H., Chen, H., Li, Y.: Construction and performance of quantum burst error correction codes for correlated errors. In: 2018 IEEE International symposium on information theory (ISIT), pp 2336–2340. IEEE (2018)

  10. Lin, S., Costello, D.J.: Error control coding: Fundamentals and applications, 2nd edn. Prentice-Hall, Inc., Upper Saddle River (2004)

    MATH  Google Scholar 

  11. Sharma, G., Hassan, A.A., Dholakia, A.: Performance evaluation of burst-error-correcting codes on a gilbert-elliott channel. IEEE transactions on communications 46(7), 846–849 (1998)

    Article  Google Scholar 

  12. Sharma, G., Dholakia, A., Hassan, A.: Simulation of error trapping decoders on a fading channel. In: Proceedings of vehicular technology conference-VTC, vol 2, pp 1361–1365, IEEE (1996)

  13. Gallager, R.: Low-density parity-check codes. IRE Transactions on information theory 8(1), 21–28 (1962)

    Article  MathSciNet  Google Scholar 

  14. MacKay, D.J.C.: Good error-correcting codes based on very sparse matrices. IEEE transactions on Information Theory 45(2), 399–431 (1999)

    Article  MathSciNet  Google Scholar 

  15. Richardson, T.J., Shokrollahi, M.A., Urbanke, R.L.: Design of capacity-approaching irregular low-density parity-check codes. IEEE transactions on information theory 47(2), 619–637 (2001)

    Article  MathSciNet  Google Scholar 

  16. Wang, C., Li, J., Kong, L., Shu, F., Francis, C.M.: Adaptive 2d scheduling based nonbinary majority-logic decoding for nand flash memory. IEEE Transactions on Circuits and Systems II: Express Briefs 67(7), 1349–1353 (2020)

    Article  Google Scholar 

  17. Li, J., Yuan, J., Malaney, R., Azmi, M.H., Xiao, M.: Network coded ldpc code design for a multi-source relaying system. IEEE Trans. Wirel. Commun. 10(5), 1538–1551 (2011)

    Article  Google Scholar 

  18. Li, J., Chen, W., Lin, Z., Vucetic, B.: Design of physical layer network coded ldpc code for a multiple-access relaying system. IEEE communications letters 17(4), 749–752 (2013)

    Article  Google Scholar 

  19. Hou, J., Siegel, P.H., Milstein, L.B.: Performance analysis and code optimization of low density parity-check codes on rayleigh fading channels. IEEE Journal on Selected areas in Communications 19(5), 924–934 (2001)

    Article  Google Scholar 

  20. Wadayama, T.: An iterative decoding algorithm of low density parity check codes for hidden markov noise channels. In: Proceedings of international symposium on information theory and its application, Honolulu, Hawaii, USA, 2000 (2000)

  21. Garcia-Frias, J.: Decoding of low-density parity-check codes over finite-state binary markov channels. IEEE Trans. Commun. 52(11), 1840–1843 (2004)

    Article  Google Scholar 

  22. Eckford, A.W., Kschischang, F.R., Pasupathy, S.: Analysis of low-density parity-check codes for the gilbert-elliott channel. IEEE Trans. Inf. Theory 51(11), 3872–3889 (2005)

    Article  MathSciNet  Google Scholar 

  23. MacKay, D.J.C., Mitchison, G., McFadden, P.L.: Sparse-graph codes for quantum error correction. IEEE Trans. Inf. Theory 50(10), 2315–2330 (2004)

    Article  MathSciNet  Google Scholar 

  24. Camara, T., Ollivier, H., Tillich, J.-P.: A class of quantum ldpc codes: construction and performances under iterative decoding. In: 2007 IEEE International symposium on information theory, pp 811–815. IEEE (2007)

  25. Aly, S.A.: A class of quantum ldpc codes constructed from finite geometries. In: IEEE GLOBECOM 2008-2008 IEEE Global telecommunications conference, pp 1–5. IEEE (2008)

  26. Hsieh, M.-H., Yen, W.-T., Hsu, L.-Y.: High performance entanglement-assisted quantum ldpc codes need little entanglement. IEEE Trans. Inf. Theory 57 (3), 1761–1769 (2011)

    Article  MathSciNet  Google Scholar 

  27. Hsieh, M.-H., Brun, T.A., Devetak, I.: Entanglement-assisted quantum quasicyclic low-density parity-check codes. Phys. Rev. A 79(3), 032340 (2009)

    Article  ADS  Google Scholar 

  28. Tillich, J.-P., Zémor, G.: Quantum ldpc codes with positive rate and minimum distance proportional to the square root of the blocklength. IEEE Trans. Inf. Theory 60(2), 1193–1202 (2013)

    Article  MathSciNet  Google Scholar 

  29. Kovalev, A.A., Pryadko, L.P.: Quantum kronecker sum-product low-density parity-check codes with finite rate. Phys. Rev. A 88(1), 012311 (2013)

    Article  ADS  Google Scholar 

  30. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54(2), 1098 (1996)

    Article  ADS  Google Scholar 

  31. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77(5), 793 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  32. Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inform. Theory 44(4), 1369–1387 (1998)

    Article  MathSciNet  Google Scholar 

  33. Hu, X.-Y., Eleftheriou, E., Arnold, D.-M.: Regular and irregular progressive edge-growth tanner graphs. IEEE Trans. Inf. Theory 51(1), 386–398 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

The author is grateful to the Editor and the anonymous reviewers for their constructive comments and suggestions. This work was supported by the National Natural Science Foundation of China (Grant No. 61802175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihao Fan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, J. A Performance Analysis of Quantum Low-Density Parity-Check Codes for Correcting Correlated Errors. Int J Theor Phys 59, 3769–3777 (2020). https://doi.org/10.1007/s10773-020-04630-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04630-x

Keywords

Navigation