Skip to main content

Advertisement

Log in

Morphology control of aluminum nitride (AlN) for a novel high-temperature hydrogen sensor

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Hydrogen is a promising renewable energy source for fossil-free transportation and electrical energy generation. However, leaking hydrogen in high-temperature production processes can cause an explosion, which endangers production workers and surrounding areas. To detect leaks early, we used a sensor material based on a wide bandgap aluminum nitride (AlN) that can withstand a high-temperature environment. Three unique AlN morphologies (rod-like, nest-like, and hexagonal plate-like) were synthesized by a direct nitridation method at 1400°C using γ-AlOOH as a precursor. The gas-sensing performance shows that a hexagonal plate-like morphology exhibited p-type sensing behavior and showed good repeatability as well as the highest response (S = 58.7) toward a 750 ppm leak of H2 gas at high temperature (500°C) compared with the rod-like and nest-like morphologies. Furthermore, the hexagonal plate-like morphology showed fast response and recovery times of 40 and 82 s, respectively. The surface facet of the hexagonal morphology of AlN might be energetically favorable for gas adsorption-desorption for enhanced hydrogen detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G.W. Crabtree, M.S. Dresselhaus, and M.V. Buchanan, The hydrogen economy, Phys. Today, 57(2004), No. 12, p. 39.

    Article  CAS  Google Scholar 

  2. J.Y. Kim, A. Jun, O. Gwon, S.Y. Yoo, M.L. Liu, J.Y. Shin, T.H. Lim, and G. Kim, Nano energy hybrid-solid oxide electrolysis cell: A new strategy for efficient hydrogen production, Nano Energy, 44(2018), p. 121.

    Article  CAS  Google Scholar 

  3. O. Lupan, G.Y. Chai, and L. Chow, Novel hydrogen gas sensor based on single ZnO nanorod, Microelectron. Eng., 85(2008), No. 11, p. 2220.

    Article  CAS  Google Scholar 

  4. H.S. Gu, Z. Wang, and Y.M. Hu, Hydrogen gas sensors based on semiconductor oxide nanostructures, Sensors, 12(2012), No. 5, p. 5517.

    Article  CAS  Google Scholar 

  5. C.X. Wang, L.W. Yin, L.Y. Zhang, D. Xiang, and R. Gao, Metal oxide gas sensors: Sensitivity and influencing factors, Sensors, 10(2010), No. 3, p. 2088.

    Article  CAS  Google Scholar 

  6. A. Hermawan, Y. Asakura, M. Kobayashi, M. Kakihana, and S. Yin, High temperature hydrogen gas sensing property of GaN prepared from a-GaOOH, Sens. ActuatorsB, 276(2018), p. 388.

    Article  CAS  Google Scholar 

  7. B.S. Kang, H.T. Wang, L.C. Tien, F. Ren, B.P. Gila, D.P. Norton, C.R. Abernathy, J.S. Lin, and S.J. Pearton, Wide bandgap semiconductor nanorod and thin film gas sensors, Sensors, 6(2006), No. 6, p. 643.

    Article  CAS  Google Scholar 

  8. F. Ren and S.J. Pearton, Recent advances in wide bandgap semiconductor-based gas sensors, [in] R. Jaaniso and O.K. Tan eds., Semiconductor Gas Sensors, 2013, p. 159.

  9. S. Yin, Creation of advanced optical responsive functionality of ceramics by green processes, J. Ceram. Soc. Jpn., 123(2015), No. 1441, p. 823.

    Article  CAS  Google Scholar 

  10. T. Singh and E. Kohn, Harsh environment materials, Ref. Module Mater. Sci. Mater. Eng. (2016). DOI: https://doi.org/10.1016/b978-0-12-803581-8.09253-5

  11. S. Yin and Y. Asakura, Recent research progress on mixed valence state tungsten based materials, Tungsten, 1(2019), No. 1, p. 5.

    Article  Google Scholar 

  12. X.Y. Huang, P.K. Jiang, and T. Tanaka, A review of dielectric polymer composites with high thermal conductivity, IEEE Electr. Insul. Mag., 27(2011), No. 4, p. 8.

    Article  Google Scholar 

  13. J. Beheshtian, M.T. Baei, Z. Bagheri, and A.A. Peyghan, AlN nanotube as a potential electronic sensor for nitrogen dioxide, Microelectron. J., 43(2012), No. 7, p. 452.

    Article  CAS  Google Scholar 

  14. A. Dey, Semiconductor metal oxide gas sensors: A review, Mater. Sci. Eng. B, 229(2018), p. 206.

    Article  CAS  Google Scholar 

  15. A. Hermawan, H. Son, Y. Asakura, T. Mori, and S. Yin, Synthesis of morphology controllable aluminum nitride by direct nitridation of y-AlOOH in the presence of N2H4 and their sintering behavior, J. Asian Ceram. Soc., 6(2018), No. 1, p. 63.

    Article  Google Scholar 

  16. A. Hermawan, Y. Asakura, M. Inada, and S. Yin, One-step synthesis of micro-/mesoporous SnO2 spheres by solvothermal method for toluene gas sensor, Ceram. Int., 45(2019), No. 12, p. 15435.

    Article  CAS  Google Scholar 

  17. X.M. Sun, X. Chen, Z.X. Deng, and Y.D. Li, A CTAB-assisted hydrothermal orientation growth of ZnO nanorods, Mater. Chem. Phys., 78(2003), No. 1, p. 99.

    Article  Google Scholar 

  18. C. Bullen, P. Zijlstra, E. Bakker, M. Gu, and C. Raston, Chemical kinetics of gold nanorod growth in aqueous CTAB solutions, Cryst. Growth Des., 11(2011), No. 8, p. 3375.

    Article  CAS  Google Scholar 

  19. R. Wahab, Y.S. Kim, and H.S. Shin, Synthesis, characterization and effect of pH variation on zinc oxide nanostructures, Mater. Trans., 50(2009), No. 8, p. 2092.

    Article  CAS  Google Scholar 

  20. P. Sivakumar, M. Jana, M.G. Jung, A. Gedanken, and H.S. Park, Hexagonal plate-like Ni-Co-Mn hydroxide nanotfructures to achieve high energy density of hybrid supercapacitors, J. Mater. Chem. A, 7(2019), No. 18, p. 11362.

    Article  CAS  Google Scholar 

  21. B.D. Liu, Y. Bando, A.M. Wu, X. Jiang, B. Dierre, T. Sekiguchi, C.C. Tang, M. Mitome, and D. Golberg, 352 nm ultraviolet emission from high-quality crystalline AlN whiskers, Nanotechnology, 21(2010), No. 7, art. No. 75708.

  22. A. Singh, H. Bae, T. Hussain, H. Watanabe, and H.Y. Lee, Efficient sensing properties of aluminum nitride nanosheets toward toxic pollutants under gated electric field, ACS Appl. Electron. Mater., 2(2020), No. 6, p. 1645.

    Article  CAS  Google Scholar 

  23. C.C. Li, H.G. Zhou, S.C. Yang, L.Y. Wei, Z.Z. Han, Y.F. Zhang, and H.B. Pan, Preadsorption of O2 on the exposed (001) facets of ZnO nanostructures for enhanced sensing of gaseous acetone, ACS Appl. Nano Mater., 2(2019), No. 10, p. 6144.

    Article  CAS  Google Scholar 

  24. L. Rosenberger, R. Baird, E. Mccullen, G. Auner, and G. Shreve, XPS analysis of aluminum nitride films deposited by plasma source molecular beam epitaxy, Surf. Interface Anal., 40(2008), No. 9, p. 1254.

    Article  CAS  Google Scholar 

  25. D. Manova, V. Dimitrova, W. Fukarek, and D. Karpuzov, Investigation of d.c.-reactive magnetron-sputtered AlN thin films by electron microprobe analysis, X-ray photoelectron spectroscopy and polarised infra-red reflection, Surf. Coat. Technol., 106(1998), No. 2–3, p. 205.

    Article  CAS  Google Scholar 

  26. T. Yamamoto and H. Katayama-Yoshida, Effects of oxygen incorporation in p-type AlN crystals doped with carbon species, PhysicaB, 273–274(1999), p. 113.

    Article  Google Scholar 

  27. R.Q. Wu, L. Shen, M. Yang, Z.D. Sha, Y.Q. Cai, Y.P. Feng, Z.G. Huang, and Q.Y. Wu, Possible efficient p-type doping of AlN using Be: An ab initio study, Appl. Phys. Lett., 91(2007), No. 15, art. No. 152110.

  28. G. Saito, Y. Kunisada, T. Watanabe, X.M. Yi, T. Nomura, N. Sakaguchi, and T. Akiyama, Combustion synthesis of AlN doped with carbon and oxygen, J. Am. Ceram. Soc., 102(2019), No. 1, p. 524.

    Article  CAS  Google Scholar 

  29. O.T. Özkan and A.J. Moulson, The electrical conductivity of single-crystal and polycrystalline aluminium oxide, J. Phys. D. Appl. Phys., 3(1970), No. 6, p. 983.

    Article  Google Scholar 

  30. S.P.S. Badwal, Electrical conductivity of single crystal and polycrystalline yttria-stabilized zirconia, J. Mater. Sci., 19(1984), No. 6, p. 1767.

    Article  CAS  Google Scholar 

  31. G.S. Devi, T. Hyodo, Y. Shimizu, and M. Egashira, Synthesis of mesoporous TiO2-based powders and their gas-sensing properties, Sens. Actuators B, 87(2002), No. 1, p. 122.

    Article  CAS  Google Scholar 

  32. Y.V. Kaneti, Z.J. Zhang, J. Yue, Q.M.D. Zakaria, C.Y. Chen, X.C. Jiang, and A.B. Yu, Crystal plane-dependent gas-sensing properties of zinc oxide nanostructures: Experimental and theoretical studies, Phys. Chem. Chem. Phys., 16(2014), No. 23, p. 11471.

    Article  CAS  Google Scholar 

  33. J.J. Chen, J.D. Zhang, M.M. Wang, and Y. Li, High-temperature hydrogen sensor based on platinum nanoparticle-decorated SiC nanowire device, Sens. Actuators B, 201(2014), p. 402.

    Article  CAS  Google Scholar 

  34. C. Lu and Z. Chen, High-temperature resistive hydrogen sensor based on thin nanoporous rutile TiO2 film on anodic aluminum oxide, SensActuators B, 140(2009), No. 1, p. 109.

    Article  CAS  Google Scholar 

  35. M. Ali, V. Cimalla, V. Lebedev, H. Romanus, V. Tilak, D. Merfeld, P. Sandvik, and O. Ambacher, Pt/GaN Schottky diodes for hydrogen gas sensors, Sens. Actuators B, 113(2006), No. 2, p. 797.

    Article  CAS  Google Scholar 

  36. C. Wildfire, E. Çiftyürek, K. Sabolsky, and E.M. Sabolsky, Investigation of doped-gadolinium zirconate nanomaterials for high-temperature hydrogen sensor applications, J. Mater. Sci, 49(2014), No. 14, p. 4735.

    Article  CAS  Google Scholar 

  37. H.J. Kim and J.H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview, Sens. Actuators B, 192(2014), p. 607.

    Article  CAS  Google Scholar 

  38. P. Strak, K. Sakowski, P. Kempisty, I. Grzegory, and S. Krukowski, Adsorption of N2 and H2 at AlN(0001) surface: Ab initio assessment of the initial stage of ammonia catalytic synthesis, J. Phys. Chem. C, 122(2018), No. 35, p. 20301.

    Article  CAS  Google Scholar 

  39. Q. Wang, Q. Sun, P. Jena, and Y. Kawazoe, Potential of AlN nanostructures as hydrogen storage materials, ACS Nano., 3(2009), No. 3, p. 621.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially support by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (KAKENHI) (No. 20H00297 and Innovative Areas No. JP16H06439) and the Cooperative Research Program of Dynamic Alliance for Open Innovations Bridging Human, Environment and Materials in the “Network Joint Research Center for Materials and Devices”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hermawan, A., Asakura, Y. & Yin, S. Morphology control of aluminum nitride (AlN) for a novel high-temperature hydrogen sensor. Int J Miner Metall Mater 27, 1560–1567 (2020). https://doi.org/10.1007/s12613-020-2143-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2143-8

Keywords

Navigation