Skip to main content
Log in

Method for the Precise Measurement of Wavelengths for Main Shell Transitions in He- and Li-like Ca Ions

  • METHODS OF EXPERIMENTAL INVESTIGATION AND MEASUREMENTS
  • Published:
High Temperature Aims and scope

Abstract

A possible approach to obtain a precise experimental data on the atomic structure of highly charged ions is considered. Since the key point determining measurement accuracy is the presence of reference lines with precisely known wavelengths, it is proposed first to to use hydrogen-like reference lines for precise measurements of the helium-like resonant transition and their dielectronic satellites. Then in turn these lines, which exist in the plasma over a wide temperature range, can be used as the reference in the wavelength measurement for other ions. The problems associated with the creation of the plasma conditions under which the reference and measured lines have comparable intensities are discussed. The irradiation of minerals with laser pulses, which, in terms of their chemical composition, are a set of elements with average 15 < Z < 30 and light Z < 15 nuclear charges, is proposed. Several experimental schemes to measure the wavelengths of the spectral lines of multiply charged calcium ions with an expected error of up to 0.125 mÅ are considered as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Skobelev, I.Yu., Loboda, P.A., Gagarin, S.V., Ivliev, S.S., Kozlov, A.I., Morozov, S.V., Pikuz, S.A., Pikuz, T.A., Popova, V.V., and Faenov, A.Ya., Opt. Spectrosc., 2016, vol. 120, no. 4, p. 507.

    Article  ADS  Google Scholar 

  2. Skobelev, I.Y., Loboda, P.A., Faenov, A.Y., Gagarin, S.V., Kozlov, A.I., Morozov, S.V., Pikuz, S.A., Pikuz, T.A., and Popova, V.V., J. Phys.: Conf. Ser., 2015, vol. 653, 012022.

    Google Scholar 

  3. Zheng, W., Wei, X., Zhu, Q., Jing, F., Hu, D., Yuan, X., Dai, W., et al., Matter Radiat.Extremes, 2017, vol. 2, no. 5, p. 243.

    Google Scholar 

  4. Weber, S., Bechet, S., Borneis, S., Brabec, L., Bučka, M., Chacon-Golcher, E., Ciappina, M., et al., Matter Radiat.Extremes, 2017, vol. 2, no. 4, p. 149.

    Google Scholar 

  5. Zou, J.P., Blanc, C.L., Audebert, P., Janicot, S., Sautivet, A.M., Martin, L., Sauteret, C., Paillard, J.L., Jacquemot, S., and Amiranoff, F., J. Phys.: Conf. Ser., 2008, vol. 112, p. 8.

    Google Scholar 

  6. Stuart, B.C., Bonlie, J.D., Britten, J.A., Caird, J.A., Cross, R.R., Ebbers, C.A., Eckart, M.J., Erlandson, A.C., Molander, W.A., Ng, A., Patel, P.K., and Price, D.F., Opt.InfoBase Conf. Pap., 2006, p. 4.

    Google Scholar 

  7. Shiraga, H., Fujioka, S., Nakai, M., Watari, T., Nakamura, H., Arikawa, Y., Hosoda, H., et al., Plasma Phys. Controlled Fusion, 2011, vol. 53, no. 12, 124029.

    Article  ADS  Google Scholar 

  8. Bagnoud, V., Aurand, B., Blazevic, A., Borneis, S., Bruske, C., Ecker, B., Eisenbarth, U., et al., Appl. Phys. B, 2010, vol. 100, no. 1, p. 137.

    Article  ADS  Google Scholar 

  9. Musgrave, I., Galimberti, M., Boyle, A., Hernandez-Gomez, C., Kidd, A., Parry, B., Pepler, D., Winstone, T., and Collier, J., High Power Laser Sci. Eng., 2015, vol. 3, p. 1.

    Article  Google Scholar 

  10. Lozhkarev, V.V., Freidman, G.I., Ginzburg, V.N., Katin, E.V., Khazanov, E.A., Kirsanov, A.V., Luchinin, G.A., Mal’shakov, A.N., Martyanov, M.A., Pala-shov, O.V., Poteomkin, A.K., Sergeev, A.M., Shaykin, A.A., and Yakovlev, I.V., Laser Phys. Lett., 2007, vol. 4, no. 6, p. 421.

    Article  ADS  Google Scholar 

  11. Gong, T., Hao, L., Li, Z., Yang, D., Li, S., Li, X., Guo, L., et al., Matter Radiat.Extremes, 2019, vol. 4, no. 5, p. 055202.

    Google Scholar 

  12. Boyko, V.A., Pal’chikov, V.G., Skobelev, I.Y., and Faenov, A.Y., Spectroscopic Constants of Atoms and Ions: Spectra of Atoms with One or Two Electrons, Begell House, 1994.

    Google Scholar 

  13. Alkhimova, M.A., Skobelev, I.Yu., Faenov, A.Ya., Arich, D.A., Pikuz, T.A., and Pikuz, S.A., Quantum Electron., 2018, vol. 48, no. 8, p. 749.

    Article  ADS  Google Scholar 

  14. Faenov, A.Y., Pikuz, S.A., Erko, A.I., Bryunetkin, B.A., Dyakin, V.M., Ivanenkov, G.V., Mingaleev, A.R., Pikuz, T.A., Romanova, V.M., and Shelkovenko, T.A., Phys. Scr., 1994, vol. 50, no. 4, p. 333.

    Article  ADS  Google Scholar 

  15. del Rio, M.S., Alianelli, L., Faenov, A.Y., and Pikuz, T., Phys. Scr., 2004, vol. 69, no. 4, p. 297.

    Article  ADS  Google Scholar 

  16. Dyakin, V.M., Skobelev, I.Yu., Faenov, A.Ya., Bartnik, A., Fedorowicz, G., Szczurek, M., Osterheld, A., and Nilsen, J., Quantum Electron., 1997, vol. 24, no. 8, p. 691.

    Article  ADS  Google Scholar 

  17. Macfarlane, J.J., Golovkin, I.E., Woodruff, P.R., Welch, D.R., Oliver, B.V., Melhorn, T.A., and Campbell, R.B., in Inertial Fusion Sciences and Applications 2003 (IFSA 2003): State of the Art 2003, Hammel, B.A., Eds., La Grange Park, IL: Am. Nucl. Soc., 2004, p. 457.

    Google Scholar 

  18. Arielly, R., Nachman, N., Zelinskyy, Y., May, V., and Selzer, Y., J. Chem. Phys., 2017, vol. 146, no. 9, 092306.

    Article  ADS  Google Scholar 

  19. Renner, O. and Rosmej, F.B., Matter Radiat.Extremes, 2019, vol. 4, no. 2, 024201.

    Google Scholar 

  20. Young, B.K.F., Osterheld, A.L., Price, D.F., Shepherd, R., Stewart, R.E., Faenov, A.Y., Magunov, A.I., Pikuz, T.A., Skobelev, I.Y., Flora, F., Bollanti, S., Di Lazzaro, P., Letardi, T., Grilli, A., Palladino, L., Reale, A., Scafati, A., and Reale, L., Rev. Sci. Instrum., 1998, vol. 69, p. 4049.

    Article  ADS  Google Scholar 

Download references

Funding

The reported study was funded by RFBR, project no. 19-32-60050.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Ryazantsev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryazantsev, S.N., Skobelev, I.Y., Mishchenko, M.D. et al. Method for the Precise Measurement of Wavelengths for Main Shell Transitions in He- and Li-like Ca Ions. High Temp 58, 655–659 (2020). https://doi.org/10.1134/S0018151X20040136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X20040136

Navigation