Skip to main content
Log in

Soliton Currents (Review)

  • PLASMA INVESTIGATIONS
  • Published:
High Temperature Aims and scope

Abstract

The theoretical and experimental results on plasma currents induced by acoustic-type solitons are generalized. Ion, electron, and dust-acoustic modes in plasma without magnetic field are considered in detail. It is shown that the generation of pulsed plasma currents with a significant direct component is an inherent property of solitons. The basic properties of soliton currents are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.

Similar content being viewed by others

Notes

  1. In open systems, the energy exchange of the system with the ambient medium is taken into account. Processes in open systems are described within nonequilibrium thermodynamics.

  2. When the ion manages to gain a velocity exceeding the velocity of the soliton, V, we have a multiflow case [22]. Such ions irreversibly reduce the energy of the soliton and cause its attenuation [22]. The corresponding solution can be obtained for the ions of a Maxwellian tail, which have a high velocity in the direction of motion of the soliton, by setting, e.g., dX/dτ = 0.8Ci|τ=0 in Eq. (27).

REFERENCES

  1. Ablowitz, M. and Sigur, H., Solitons and the Inverse Scattering Transform, Philadelphia: SIAM, 1981.

    Book  Google Scholar 

  2. Russell, J.S., Report of the 7th Meeting of British Association for the Advancement of Science, London, 1838, p. 417.

  3. Russell, J.S., Report on waves, Report of the Fourteenth Meeting of the British Association for the Advancement of Science, York,1844, London, 1845, p. 311.

  4. Korteweg, D.J. and De Vries, G., Phil. Mag. (Ser. 5), 1895, vol. 39, p. 422.

  5. Gubankov, V.N., Solitony (Solinons), Moscow: Znanie, 1987.

    Google Scholar 

  6. Drazin, P.G. and Johnson, R.S., Solitons: An Introduction, Cambridge: Cambridge Univ. Press, 1989.

    Book  Google Scholar 

  7. Belova, T.I. and Kudryavtsev, A.E., Phys.—Usp., 1997, vol. 40, no. 4, p. 359.

    Article  ADS  Google Scholar 

  8. Davydov, A.S., Solitons in Molecular Systems, Mathematics and Its Applications (Soviet Series), vol. 61, Amsterdam: Springer, 1991.

  9. Pickett, J.S., Kahler, S.W., Chen, L.-J., Huff, R.L., Santolík, O., Khotyaintsev, Y., Décréau, P.M.E., Winningham, D., Frahm, R., Goldstein, M.L., Lakhina, G.S., Tsurutani, B.T., Lavraud, B., Gurnett, D.A., André, M., Fazakerley, A., Balogh, A., and Rème, H., Nonlinear Processes Geophys., 2004, vol. 11, p. 183.

    Article  ADS  Google Scholar 

  10. Bounds, S., Pfaff, R., Knowlton, S., Mozer, F., Temerin, M., and Kletzing, C., J. Geophys. Res., 1999, vol. 104, p. 28 709.

  11. Reddy, R.V. and Lakhina, G.S., Planet. Space Sci., 1991, vol. 39, p. 1343.

    Article  ADS  Google Scholar 

  12. Matsumoto, H., Kojima, H., Miyatake, T., Omura, Y., Okada, M., Nagano, I., and Tsutsui, M., Geophys. Rev. Lett., 1994, vol. 21, p. 2915.

    Article  ADS  Google Scholar 

  13. Trines, R., Bingham, R., Dunlop, M.W., Vaivads, A., Davies, J.A., Mendonça, J.T., Silva, L.O., and Shukla, P.K., Phys. Rev. Lett., 2007, vol. 99, 205006.

    Article  ADS  Google Scholar 

  14. Shi, J., Qureshi, M.N.S., Torkar, K., Dunlop, M., Liu, Zh., and Zhang, T.L., Ann. Geophys., 2008, vol. 26, p. 1431.

    Article  ADS  Google Scholar 

  15. Kerner, B.S. and Osipov, V.V., Autosolitons: A New Approach to Problems of Self-Organization and Turbulence, Amsterdam: Springer, 1994.

    Book  Google Scholar 

  16. Akhmediev, N. and Ankiewicz, A., Dissipative Solitons:Lecture Notes in Physics, Heidelberg: Springer, 2005.

    Book  Google Scholar 

  17. Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.-M., and Grelu, P., Int. J. Bifurcation Chaos, 2009, vol. 19, p. 2621.

    Article  ADS  Google Scholar 

  18. Prigogine, I., Introduction to Thermodynamics of Irreversible Processes, New York: Interscience, 1961, 2nd ed.

    MATH  Google Scholar 

  19. Cross, M.C. and Hohenberg, P.C., Rev. Mod. Phys., 1993, vol. 65, p. 851.

    Article  ADS  Google Scholar 

  20. Ghosh, S., Adak, A., and Khan, M., Phys. Plasmas, 2014, vol. 21, 012303.

    Article  ADS  Google Scholar 

  21. Khan, S., Rahman, A., Hadi, F., Zeb, A., and Khan, M.Z., Contrib. Plasma Phys., 2017, vol. 57, p. 223.

    Article  ADS  Google Scholar 

  22. Trukhachev, F.M., Vasiliev, M.M., Petrov, O.F., and Vasilieva, E.V., Phys. Rev. E, 2019, vol. 100, 063202.

    Article  ADS  Google Scholar 

  23. Galperin, Yu.I. and Volosevich, A.V., Cosmic Res., 2000, vol. 38, no. 5, p. 514.

    ADS  Google Scholar 

  24. Trukhachev, F.M. and Tomov, A.V., Cosmic Res., 2016, vol. 54, p. 351.

    Article  ADS  Google Scholar 

  25. Trukhachev, F.M., Tomov, A.V., Mogilevsky, M.M., and Chugunin, D.V., Tech. Phys. Lett., 2018, vol. 44, p. 494.

    Article  ADS  Google Scholar 

  26. Petrov, O.F., Trukhachev, F.M., Vasiliev, M.M., and Gerasimenko, N.V., J. Exp. Theor. Phys., 2018, vol. 126, p. 842.

    Article  ADS  Google Scholar 

  27. Truhachev, F.M., Proceedings of the National Academy of Sciences of Belarus. Рhysics and Mathematics series, 2005, no. 5, р. 105 (in Russian).

  28. Simonchik, L.V. and Truhachev, F.M., Problems of Atomic Science and Technology. Series: Plasma Physics. 2007, vol. 13, p. 49.

  29. Artsimovich, L.A. and Sagdeev, R.Z., Fizika plazmy dlya fizikov (Plasma Physics for Physicists), Moscow: Atomizdat, 1979.

  30. Tran, M.Q., Phys. Scr., 1979, vol. 20, p. 317.

    Article  ADS  Google Scholar 

  31. Karpman, V.I. and Maslov, E.M., Zh. Eksp. Teor. Fiz., 1977, vol. 46, p. 281.

    Google Scholar 

  32. Herman, R.L., J. Phys. A, 1990, vol. 23, p. 2327.

    Article  ADS  MathSciNet  Google Scholar 

  33. Mace, R.L., Babodal, S., Bharhram, R., and Hellberg, M.A., J. Plasma Phys., 1991, vol. 45, p. 323.

    Article  ADS  Google Scholar 

  34. Johnston, C.R. and Epstein, M., Phys. Plasmas, 2000, vol. 7, p. 906.

    Article  ADS  Google Scholar 

  35. Ghosh, S.S., Ghosh, K.K., and Sekar Lyender, A.N., J. Phys. Plasmas, 1996, vol. 3, p. 3939.

    Article  ADS  Google Scholar 

  36. Okutsu, E., Nakamura, M., Nakamura, Y., and Itoh, T., Plasma Phys., 1978, vol. 20, p. 561.

    Article  ADS  Google Scholar 

  37. Abrol, P.S. and Tagare, S.G., Plasma Phys., 1980, vol. 22, p. 831.

    Article  ADS  Google Scholar 

  38. Gurevich, A.V., Zh. Eksp. Teor. Fiz., 1968, vol. 26, no. 3, p. 575.

  39. Lifshits, E.M. and Pitaevskii, L.P., Fizicheskaya kinetika (Physical Kinetics), Moscow: Nauka, 1979.

  40. Aleshin, I.M. and Peregudov, D.V., Vestn. Mosk. Univ., Ser. 3: Fiz. Astron., 2000, no. 1, p. 8.

  41. Bernstein, I.B., Green, J.M., and Kruskal, M.D., Phys. Rev., 1957, vol. 108, p. 546.

    Article  ADS  MathSciNet  Google Scholar 

  42. Watanabe, K. and Taniuti, T., J. Phys. Soc. Jpn., 1977, vol. 43, p. 1819.

    Article  ADS  Google Scholar 

  43. Gary, S.P. and Tokar, R.L., Phys. Fluids, 1985, vol. 28, p. 2439.

    Article  ADS  Google Scholar 

  44. Fortov, V.E., Khrapak, A.G., Khrapak, S.A., Molotkov, V.I., and Petrov, O.F., Phys.—Usp., 2004, vol. 47, no. 5, p. 447.

    Article  ADS  Google Scholar 

  45. Shukla, P.K. and Mamun, A.A., Introduction to Dusty Plasma Phys., Boca Raton, FL: CRC, 2015.

    Book  Google Scholar 

  46. Rao, N.N., Shukla, P.K., and Yu, M.Y., Planet. Space Sci., 1990, vol. 38, no. 4, p. 543.

    Article  ADS  Google Scholar 

  47. Kotsarenko, N.Ya., Koshevaya, S.V., Stewart, G.A., and Maravilla, D., Planet. Space Sci., 1998, vol. 46, p. 429.

    Article  ADS  Google Scholar 

  48. Heidemann, R., Zhdanov, S., Sutterlin, R., Thomas, H.M., and Morfill, G.E., Phys. Rev. Lett., 2009, vol. 102, 135002.

    Article  ADS  Google Scholar 

  49. Samsonov, D., Ivlev, A.V., Quinn, R.A., Morfill, G., and Zhdanov, S., Phys. Rev. Lett., 2002, vol. 88, 095004.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. Trukhachev.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trukhachev, F.M., Vasiliev, M.M. & Petrov, O.F. Soliton Currents (Review). High Temp 58, 520–538 (2020). https://doi.org/10.1134/S0018151X2004015X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X2004015X

Navigation